Academia.eduAcademia.edu

Outline

Partitioning Perfect Graphs into Stars

2016, Journal of Graph Theory

https://doi.org/10.1002/JGT.22062

Abstract

The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NPcomplete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.

References (35)

  1. K. Asdre and S. D. Nikolopoulos. NP-completeness results for some problems on subclasses of bipartite and chordal graphs. Theoretical Computer Science, 381(1-3):248-259, 2007.
  2. F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized planar matching. Journal of Algorithms, 11(2):153-184, 1990.
  3. R. van Bevern, C. Komusiewicz, H. Moser, and R. Niedermeier. Measuring indifference: Unit Interval Vertex Deletion. In Proceedings of the 36th International Workshop on Graph-Theoretic Concepts in Computer Science (WG '10), volume 6410 of LNCS, pages 232-243. Springer, 2010.
  4. R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger. Network-based vertex dissolution. SIAM Journal on Discrete Mathematics, 29(2):888-914, 2015.
  5. R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller. Interval scheduling and colorful independent sets. Journal of Scheduling, 18(5):449-469, 2015.
  6. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey, volume 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.
  7. J. Chalopin and D. Paulusma. Packing bipartite graphs with covers of complete bipartite graphs. Discrete Applied Mathematics, 168:40-50, 2014.
  8. E. Cohen and M. Tarsi. NP-completeness of graph decomposition problems. Journal of Complexity, 7(2):200-212, 1991.
  9. D. G. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM Journal on Computing, 14(4):926-934, 1985.
  10. D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905-1953, 2009.
  11. G. Cornuéjols. General factors of graphs. Journal of Combinatorial Theory. Series B, 45(2):185-198, 1988.
  12. E. Dahlhaus and M. Karpinski. Matching and multidimensional matching in chordal and strongly chordal graphs. Discrete Applied Mathematics, 84 (1-3):79-91, 1998.
  13. K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover problem. Mathematical Programming, 98(1-3):477-491, 2003.
  14. M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics, 10(2):139-153, 1985.
  15. M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. Journal of Algorithms, 7(2):174-184, 1986.
  16. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.
  17. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics. Elsevier, Amsterdam, Boston, Paris, 2004.
  18. D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor problems. SIAM Journal on Computing, 12(3):601-608, 1983.
  19. A. W. J. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C. R. Spieksma. Interval scheduling: A survey. Naval Research Logistics, 54(5):530-543, 2007.
  20. A. Kosowski, M. Ma lafiejski, and P. Ży ĺinski. Parallel processing subsystems with redundancy in a distributed environment. In Proceedings of the 6th International Conference on Parallel Processing and Applied Mathematics (PPAM '05), volume 3911 of LNCS, pages 1002-1009. Springer, 2006.
  21. L. M. Lovász, C. Thomassen, Y. Wu, and C. Zhang. Nowhere-zero 3-flows and modulo k-orientations. Journal of Combinatorial Theory. Series B, 103 (5):587-598, 2013.
  22. M. Ma lafiejski and P. Żyliński. Weakly cooperative guards in grids. In Proceedings of the International Conference on Computational Science and Its Applications (ICCSA '05), volume 3480 of LNCS, pages 647-656. Springer, 2005.
  23. J. Monnot and S. Toulouse. The path partition problem and related problems in bipartite graphs. Operations Research Letters, 35(5):677-684, 2007.
  24. B. S. Panda and S. K. Das. A linear time recognition algorithm for proper interval graphs. Information Processing Letters, 87(3):153-161, 2003.
  25. J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender. Partition into triangles on bounded degree graphs. Theory of Computing Systems, 52(4):687-718, 2013.
  26. P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete & Computational Geometry, 1(1): 343-353, 1986.
  27. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol- ume A. Springer, 2003.
  28. J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Applied Mathematics, 18(3):279-292, 1987.
  29. G. Steiner. On the k-path partition problem in cographs. Congressus Numerantium, 147:89-96, 2000.
  30. G. Steiner. On the k-path partition of graphs. Theoretical Computer Science, 290(3):2147-2155, 2003.
  31. K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on series-parallel graphs. Journal of the ACM, 29 (3):623-641, 1982.
  32. C. Thomassen. The weak 3-flow conjecture and the weak circular flow conjecture. Journal of Combinatorial Theory. Series B, 102(2):521-529, 2012.
  33. J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Appl. Math., 69(3):247-255, 1996.
  34. J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path partitions in trees. Discrete Applied Mathematics, 78(1-3):227-233, 1997.
  35. R. Yuster. Combinatorial and computational aspects of graph packing and graph decomposition. Computer Science Review, 1(1):12-26, 2007.