Star Partitions of Perfect Graphs
2014, Lecture Notes in Computer Science
Abstract
The partition of graphs into nice subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable and NP-hard cases, for example, on interval graphs, grid graphs, and bipartite permutation graphs.
References (34)
- K. Asdre and S. D. Nikolopoulos. NP-completeness results for some problems on subclasses of bipartite and chordal graphs. Theor. Comput. Sci., 381 (1-3):248-259, 2007.
- F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized planar matching. J. Algorithms, 11(2):153-184, 1990.
- R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger. Network-based dissolution. Manuscript, TU Berlin, Feb. 2014. arXiv:1402.2664 [cs.DM].
- A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey, volume 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.
- D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985.
- G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2): 185-198, 1988.
- E. Dahlhaus and M. Karpinski. Matching and multidimensional matching in chordal and strongly chordal graphs. Discrete Appl. Math., 84(1-3):79-91, 1998.
- K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover problem. Math. Program., 98(1-3):477-491, 2003.
- M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math., 10(2):139-153, 1985.
- M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics. Elsevier, Amsterdam, Boston, Paris, 2004.
- R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum, New York, 1972.
- D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor problems. SIAM J. Comput., 12(3):601-608, 1983.
- A. Kosowski, M. Ma lafiejski, and P. Ży ĺinski. Parallel processing subsystems with redundancy in a distributed environment. In Parallel Processing and Applied Mathematics, 6th International Conference, PPAM 2005, volume 3911 of LNCS, pages 1002-1009. Springer, 2006.
- M. Ma lafiejski and P. Żyliński. Weakly cooperative guards in grids. In Proc. 5th ICCSA, volume 3480 of LNCS, pages 647-656, 2005.
- J. Monnot and S. Toulouse. The path partition problem and related problems in bipartite graphs. Oper. Res. Lett., 35(5):677-684, 2007.
- J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender. Partition into triangles on bounded degree graphs. Theory Comput. Syst., 52(4):687-718, 2013.
- P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1(1):343-353, 1986.
- J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Appl. Math., 18(3):279-292, 1987.
- G. Steiner. On the k-path partition problem in cographs. Congressus Numerantium, 147:89-96, 2000.
- G. Steiner. On the k-path partition of graphs. Theor. Comput. Sci., 290(3): 2147-2155, 2003.
- K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM, 29(3):623-641, 1982.
- J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Appl. Math., 69(3):247-255, 1996.
- J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path partitions in trees. Discrete Appl. Math., 78(1-3):227-233, 1997.
- R. Yuster. Combinatorial and computational aspects of graph packing and graph decomposition. Computer Science Review, 1(1):12-26, 2007. Bibliography of the appendix
- R. van Bevern, C. Komusiewicz, H. Moser, and R. Niedermeier. Measuring indifference: Unit Interval Vertex Deletion. In Proc. 36th WG, volume 6410 of LNCS, pages 232-243, 2010.
- D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985.
- D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math., 23(4):1905-1953, 2009.
- G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2): 185-198, 1988.
- M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math., 10(2):139-153, 1985.
- M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. J. Algorithms, 7(2):174-184, 1986.
- M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.
- B. S. Panda and S. K. Das. A linear time recognition algorithm for proper interval graphs. Inf. Process. Lett., 87(3):153-161, 2003.
- A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol- ume A. Springer, 2003.
- J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Appl. Math., 18(3):279-292, 1987.