Academia.eduAcademia.edu

Outline

Star Partitions of Perfect Graphs

2014, Lecture Notes in Computer Science

Abstract

The partition of graphs into nice subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable and NP-hard cases, for example, on interval graphs, grid graphs, and bipartite permutation graphs.

References (34)

  1. K. Asdre and S. D. Nikolopoulos. NP-completeness results for some problems on subclasses of bipartite and chordal graphs. Theor. Comput. Sci., 381 (1-3):248-259, 2007.
  2. F. Berman, D. Johnson, T. Leighton, P. W. Shor, and L. Snyder. Generalized planar matching. J. Algorithms, 11(2):153-184, 1990.
  3. R. van Bevern, R. Bredereck, J. Chen, V. Froese, R. Niedermeier, and G. J. Woeginger. Network-based dissolution. Manuscript, TU Berlin, Feb. 2014. arXiv:1402.2664 [cs.DM].
  4. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey, volume 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.
  5. D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985.
  6. G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2): 185-198, 1988.
  7. E. Dahlhaus and M. Karpinski. Matching and multidimensional matching in chordal and strongly chordal graphs. Discrete Appl. Math., 84(1-3):79-91, 1998.
  8. K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover problem. Math. Program., 98(1-3):477-491, 2003.
  9. M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math., 10(2):139-153, 1985.
  10. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics. Elsevier, Amsterdam, Boston, Paris, 2004.
  11. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum, New York, 1972.
  12. D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor problems. SIAM J. Comput., 12(3):601-608, 1983.
  13. A. Kosowski, M. Ma lafiejski, and P. Ży ĺinski. Parallel processing subsystems with redundancy in a distributed environment. In Parallel Processing and Applied Mathematics, 6th International Conference, PPAM 2005, volume 3911 of LNCS, pages 1002-1009. Springer, 2006.
  14. M. Ma lafiejski and P. Żyliński. Weakly cooperative guards in grids. In Proc. 5th ICCSA, volume 3480 of LNCS, pages 647-656, 2005.
  15. J. Monnot and S. Toulouse. The path partition problem and related problems in bipartite graphs. Oper. Res. Lett., 35(5):677-684, 2007.
  16. J. M. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender. Partition into triangles on bounded degree graphs. Theory Comput. Syst., 52(4):687-718, 2013.
  17. P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom., 1(1):343-353, 1986.
  18. J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Appl. Math., 18(3):279-292, 1987.
  19. G. Steiner. On the k-path partition problem in cographs. Congressus Numerantium, 147:89-96, 2000.
  20. G. Steiner. On the k-path partition of graphs. Theor. Comput. Sci., 290(3): 2147-2155, 2003.
  21. K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM, 29(3):623-641, 1982.
  22. J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Appl. Math., 69(3):247-255, 1996.
  23. J.-H. Yan, G. J. Chang, S. M. Hedetniemi, and S. T. Hedetniemi. k-path partitions in trees. Discrete Appl. Math., 78(1-3):227-233, 1997.
  24. R. Yuster. Combinatorial and computational aspects of graph packing and graph decomposition. Computer Science Review, 1(1):12-26, 2007. Bibliography of the appendix
  25. R. van Bevern, C. Komusiewicz, H. Moser, and R. Niedermeier. Measuring indifference: Unit Interval Vertex Deletion. In Proc. 36th WG, volume 6410 of LNCS, pages 232-243, 2010.
  26. D. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985.
  27. D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math., 23(4):1905-1953, 2009.
  28. G. Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45(2): 185-198, 1988.
  29. M. E. Dyer and A. M. Frieze. On the complexity of partitioning graphs into connected subgraphs. Discrete Appl. Math., 10(2):139-153, 1985.
  30. M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. J. Algorithms, 7(2):174-184, 1986.
  31. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.
  32. B. S. Panda and S. K. Das. A linear time recognition algorithm for proper interval graphs. Inf. Process. Lett., 87(3):153-161, 2003.
  33. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, vol- ume A. Springer, 2003.
  34. J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite permutation graphs. Discrete Appl. Math., 18(3):279-292, 1987.