Academia.eduAcademia.edu

Outline

SBMOpenMM: A Builder of Structure-Based Models for OpenMM

https://doi.org/10.33774/CHEMRXIV-2021-VHP3N-V3

Abstract

Molecular dynamics (MD) simulations have become a standard tool to correlate the structure and function of biomolecules, and significant advances have been made in the study of proteins and their complexes. A major drawback of conventional MD simulations is the difficulty and cost of obtaining converged results, especially when exploring potential energy surfaces containing considerable energy barriers. This limits the wide use of MD calculations to determine the thermodynamic properties of biomolecular processes. Alternatively, a wide range of Structure-Based Models (SBMs) has been used in the literature to unravel the basic mechanisms of biomolecular dynamics. Here we introduce SBMOpenMM, a Python library to build force fields for SBMs, that uses the OpenMM framework to create and run SBM simulations. The code is flexible, user-friendly, and profits from the high customizability and performance provided by the OpenMM platform.

References (24)

  1. Berendsen, H. Collective protein dynamics relation to function. Current Opinion in Structural Biology vol. 10 165-169 (2000).
  2. Kern, D. & Zuiderweg, E. R. P. The role of dynamics in allosteric regulation. Current Opinion in Structural Biology vol. 13 748-757 (2003).
  3. Grant, B. J., Gorfe, A. A. & McCammon, J. A. Large conformational changes in proteins: signaling and other functions. Curr. Opin. Struct. Biol. 20, 142-147 (2010).
  4. Villà, J. & Warshel, A. Energetics and Dynamics of Enzymatic Reactions. The Journal of Physical Chemistry B vol. 105 7887-7907 (2001).
  5. Yang, Y. I., Shao, Q., Zhang, J., Yang, L. & Gao, Y. Q. Enhanced sampling in molecular dynamics. J. Chem. Phys. 151, 070902 (2019).
  6. Blaszczyk, M. et al. Protein Structure Prediction Using Coarse-Grained Models. Springer Series on Bio-and Neurosystems 27-59 (2019) doi:10.1007/978-3-319-95843-9_2.
  7. Rovigatti, L., Sulc, P., Reguly, I. Z. & Romano, F. A comparison between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36, 1-8 (2015).
  8. Levitt, M. & Warshel, A. Computer simulation of protein folding. Nature vol. 253 694-698 (1975).
  9. Fan, Z. Z., Hwang, J.-K. & Warshel, A. Using simplified protein representation as a reference potential for all-atom calculations of folding free energy. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) vol. 103 77-80 (1999).
  10. Taketomi, H., Ueda, Y. & Gō, N. STUDIES ON PROTEIN FOLDING, UNFOLDING AND FLUCTUATIONS BY COMPUTER SIMULATION: I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein Res. 7, 445-459 (1975).
  11. Nymeyer, H., García, A. E. & Onuchic, J. N. Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc. Natl. Acad. Sci. U. S. A. 95, 5921-5928 (1998).
  12. Bryngelson, J. D. & Wolynes, P. G. Spin glasses and the statistical mechanics of protein folding. Proceedings of the National Academy of Sciences vol. 84 7524-7528 (1987).
  13. Bryngelson, J. D. & Wolynes, P. G. Intermediates and barrier crossing in a random energy model (with applications to protein folding). The Journal of Physical Chemistry vol. 93 6902-6915 (1989).
  14. Clementi, C., Nymeyer, H. & Onuchic, J. N. Topological and energetic factors: what determines the structural details of the transition state ensemble and 'en-route' intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298, 937-953 (2000).
  15. Noel, J. K. & Onuchic, J. N. The Many Faces of Structure-Based Potentials: From Protein Folding Landscapes to Structural Characterization of Complex Biomolecules. Computational Modeling of Biological Systems 31-54 (2012) doi:10.1007/978-1-4614-2146-7_2.
  16. Takada, S. Gō model revisited. Biophys Physicobiol 16, 248-255 (2019).
  17. Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).
  18. Chu, Y. P., Chang, C. H., Shiu, J. H. & Chang, Y. T. Solution structure and backbone dynamics of the DNA-binding domain of FOXP1: Insight into its domain swapping and DNA binding. Proteins (2011).
  19. Noel, J. K., Whitford, P. C. & Onuchic, J. N. The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function. J. Phys. Chem. B 116, 8692-8702 (2012).
  20. Scherer, M. K. et al. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 11, 5525-5542 (2015).
  21. Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013).
  22. Medina, E. et al. Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1. Biophys. J. 110, 2349-2360 (2016).
  23. Hruska, E., Abella, J. R., Nüske, F., Kavraki, L. E. & Clementi, C. Quantitative comparison of adaptive sampling methods for protein dynamics. J. Chem. Phys. 149, 244119 (2018).
  24. Avila, C. L., Drechsel, N. J. D., Alcantara, R. & Villa-Freixa, J. Multiscale Molecular Dynamics of Protein Aggregation. Current Protein & Peptide Science vol. 12 221-234 (2011).