Academia.eduAcademia.edu

Outline

Cooperative searching for stochastic targets

2011, Computing Research Repository - CORR

Abstract

Spatial search problems abound in the real world, from locating hidden nuclear or chemical sources to finding skiers after an avalanche. We exemplify the formalism and solution for spatial searches involving two agents that may or may not choose to share information during a search. For certain classes of tasks, sharing information between multiple searchers makes cooperative searching advantageous. In some examples, agents are able to realize synergy by aggregating information and moving based on local judgments about maximal information gathering expectations. We also explore one- and two-dimensional simplified situations analytically and numerically to provide a framework for analyzing more complex problems. These general considerations provide a guide for designing optimal algorithms for real-world search problems.

References (19)

  1. A. K. Agogino and K. Tumer. Analyzing and visualizing multiagent rewards in dynamic and stochastic domains. Autonomous Agents and Multi-Agent Systems, 17(2):320, 2008.
  2. J. M. Bernardo and A. F. M. Smith. Bayesian Theege- sory. Wiley, New York, 1994.
  3. L. M. A. Bettencourt. The rules of information aggre- gation and emergence of collective intelligent behavior. Topics in Cognitive Science, 1:598, 2009.
  4. L. M. A. Bettencourt, V. Gintautas, and M. I. Ham. Iden- tification of functional information subgraphs in complex networks. Phys. Rev. Lett., 100:238701, 2008.
  5. L. M. A. Bettencourt, G. J. Stephens, M. I. Ham, and G. W. Gross. Functional structure of cortical neuronal networks grown in vitro. Phys. Rev. E, 75:021915, 2007.
  6. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991.
  7. M. Eisenbach and J. W. Lengeler. Chemotaxis. Imperial College Press, London, 2004.
  8. S. Fine, R. Gilad-Bachrach, and E. Shamir. Query by committee, linear separation and random walks. Theor. Comput. Sci., 284(1):25, 2002.
  9. J. Fox, D. Glasspool, and J. Bury. Quantitative and qualitative approaches to reasoning under uncertainty in medical decision making. In Artificial Intelligence in Medicine: Lecture Notes in Computer Science, volume 2101, pages 272-282. Springer, Berlin/Heidelberg, Ger- many, 2001.
  10. Y. Freund, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. In Machine Learning, page 133, 1997.
  11. V. Gintautas, A. Hagberg, and L. M. A. Bettencourt. When is social computation better than the sum of its parts? In H. Liu, J. J. Salerno, and M. J. Young, editors, Social Computing, Behavior Modeling, and Prediction, page 93, 2009.
  12. G. Hollinger, S. Singh, J. Djugash, and A. Kehagias. Ef- ficient multi-robot search for a moving target. The In- ternational Journal of Robotics Research, 28(2):201-219, 2009.
  13. R. Playter, M. Buehler, and M. Raibert. Bigdog. In G. R. Gerhart, C. M. Shoemaker, and D. W. Gage, editors, Proc. SPIE: Unmanned Systems Technology VIII, volume 6230, 2006.
  14. R. A. Russell, A. Bab-Hadiashar, R. L. Shepherd, and G. G. Wallace. A comparison of reactive robot chemo- taxis algorithms. Robotics and Autonomous Systems, 45(2):83, 2003.
  15. E. Schneidman, W. Bialek, and M. J. Berry II. Synergy, redundancy, and independence in population codes. J. Neurosci., 23:11539, 2003.
  16. H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In COLT '92: Proceedings of the fifth annual workshop on Computational learning theory, page 287, 1992.
  17. R. S. Sulton and A. G. Barto. Reinforcement learning: an introduction. MIT Press, Cambrigde MA, 1998.
  18. M. Vergassola, E. Villermaux, and B. I. Shraiman. "In- fotaxis" as a strategy for searching without gradients. Nature, 445:406, 2007.
  19. W. Zhang, Z. Deng, G. Wang, L. Wittenburg, and Z. Xing. Distributed problem solving in sensor net- works. In AAMAS '02: Proceedings of the first interna- tional joint conference on Autonomous agents and mul- tiagent systems, pages 988-989, New York, NY, USA, 2002. ACM.