Academia.eduAcademia.edu

Outline

Physical search problems with probabilistic knowledge

2013, Artificial Intelligence

https://doi.org/10.1016/J.ARTINT.2012.12.003

Abstract
sparkles

AI

This paper addresses physical search problems faced by agents in uncertain environments where the cost of obtaining resources varies by location. Three variants of the search problem are studied: minimizing total expected cost, maximizing success probability under a budget, and minimizing budget for a target success probability. The paper provides polynomial solutions for single agent cases, explores both shared and private budget models in multi-agent scenarios, and assesses the implications of agent homogeneity and heterogeneity. It additionally discusses Nash equilibria in environments with self-interested agents, demonstrating polynomial-time solutions and tight performance bounds for the proposed algorithms.

References (61)

  1. F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, N. Papakonstantinou, The complexity of the traveling repairman problem, Theoretical Informatics and Applications 20 (1986) 79-87.
  2. N. Agmon, S. Kraus, G.A. Kaminka, Multi-robot perimeter patrol in adversarial settings, in: Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA-2008), 2008, pp. 2339-2345.
  3. N. Agmon, D. Urieli, P. Stone, Multiagent patrol generalized to complex environmental conditions, in: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-2011), 2011, pp. 1090-1095.
  4. S. Arora, G. Karakostas, Approximation schemes for minimum latency problems, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC-1999), 1999, pp. 688-693.
  5. S. Arora, G. Karakostas, A 2 + approximation algorithm for the k-MST problem, in: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2000), 2000, pp. 754-759.
  6. Y. Aumann, N. Hazon, S. Kraus, D. Sarne, Physical search problems applying economic search models, in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008), 2008, pp. 9-16.
  7. G. Ausiello, S. Leonardi, A. Marchetti-Spaccamela, On salesmen, repairmen, spiders, and other traveling agents, in: Algorithms and Complexity, Springer, Berlin/Heidelberg, 2000, pp. 1-16.
  8. B. Awerbuch, Y. Azar, A. Blum, S. Vempala, Improved approximation guarantees for minimum weight k-trees and prize-collecting salesmen, SIAM Journal on Computing 28 (1) (1999) 254-262.
  9. E. Balas, The prize collecting traveling salesman problem, Networks 19 (1989) 621-636.
  10. J.C. Beck, N. Wilson, Job shop scheduling with probabilistic durations, in: Proceedings of the Sixteenth European Conference on Artificial Intelligence (ECAI-2004), 2004, pp. 652-656.
  11. J.C. Beck, N. Wilson, Proactive algorithms for job shop scheduling with probabilistic durations, IEEE Transactions on Robotics 28 (1) (2007) 183-232.
  12. R. Bellman, A Markovian decision process, Indiana University Mathematics Journal 6 (4) (1957) 679-684.
  13. D. Bernstein, D. Givan, N. Immerman, S. Zilberstein, The complexity of decentralized control of Markov decision processes, Mathematics of Operations Research 27 (4) (2002) 819-840.
  14. L. Bianco, A. Mingozzi, S. Ricciardelli, The traveling salesman problem with cumulative costs, Networks 23 (2) (1993) 81-91.
  15. A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The minimum latency problem, in: Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing (STOC-1994), 1994, pp. 163-171.
  16. A. Blum, R. Ravi, S. Vempala, A constant-factor approximation algorithm for the k-MST problem, Journal of Computer and System Sciences 58 (1) (1999) 101-108.
  17. A.M. Campbell, M. Gendreau, B.W. Thomas, The orienteering problem with stochastic travel and service times, Annals of Operations Research 186 (1) (2011) 61-81.
  18. K. Chaudhuri, B. Godfrey, S. Rao, K. Talwar, Paths, trees, and minimum latency tour, in: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS-2003), 2003, pp. 36-45.
  19. Y. Elmaliach, A. Shiloni, G.A. Kaminka, A realistic model of frequency-based multi-robot fence patrolling, in: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008), 2008, pp. 63-70.
  20. J. Fakcharoenphol, C. Harrelson, S. Rao, The k-traveling repairman problem, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2003), 2003, pp. 655-664.
  21. J. Fakcharoenphol, C. Harrelson, S. Rao, The k-traveling repairmen problem, ACM Transactions on Algorithms 3 (4) (2007) 40.
  22. T.S. Ferguson, Who solved the secretary problem?, Statistical Science 4 (3) (1989) 282-289.
  23. M. Fischetti, G. Laporte, S. Martello, The delivery man problem and cumulative matroids, Operations Research 41 (1993) 1055-1064.
  24. N. Fu, P. Varakantham, H.C. Lau, Towards finding robust execution strategies for RCPSP/max with durational uncertainty, in: Proceedings of the Twen- tieth International Conference on Automated Planning and Scheduling (ICAPS-2010), 2010, pp. 73-80.
  25. Y. Gabriely, E. Rimon, Spanning-tree based coverage of continuous areas by a mobile robot, Annals of Mathematics and Artificial Intelligence 31 (2001) 77-98.
  26. S. Gal, Search Games, Academic Press, 1980.
  27. A. García, P. Jodrá, J. Tejel, A note on the traveling repairman problem, Networks 40 (2002) 27-31.
  28. N. Garg, A 3-approximation for the minimum tree spanning k vertices, in: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS-1996), 1996, pp. 302-309.
  29. N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, in: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (STOC-2005), 2005, pp. 396-402.
  30. M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency problem, in: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-1996), 1996, pp. 152-158.
  31. N. Hazon, Y. Aumann, S. Kraus, Collaborative multi agent physical search with probabilistic knowledge, in: Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence (IJCAI-2009), 2009, pp. 164-167.
  32. N. Hazon, G.A. Kaminka, Redundancy, efficiency, and robustness in multi-robot coverage, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA-2005), 2005, pp. 735-741.
  33. W. Herroelen, R. Leus, Project scheduling under uncertainty: Survey and research potentials, European Journal of Operational Research 165 (2) (2005) 289-306.
  34. T. İlhan, S.M.R. Iravani, M.S. Daskin, The orienteering problem with stochastic profits, IIE Transactions 40 (4) (2008) 406-421.
  35. J. Kephart, A. Greenwald, Shopbot economics, Autonomous Agents and Multi-Agent Systems 5 (3) (2002) 255-287.
  36. J. Kephart, J. Hanson, A. Greenwald, Dynamic pricing by software agents, Computer Networks 32 (6) (2000) 731-752.
  37. S. Koenig, M. Likhachev, Fast replanning for navigation in unknown terrain, IEEE Transactions on Robotics 21 (3) (2005) 354-363.
  38. B.O. Koopman, Search and Screening: General Principles with Historical Applications, Pergamon Press, 1980.
  39. E. Koutsoupias, C.H. Papadimitriou, M. Yannakakis, Searching a fixed graph, in: Proceedings of the 23rd International Colloquium on Automata, Lan- guages and Programming (ICALP-1996), 1996, pp. 280-289.
  40. S. Lippman, J. McCall, The economics of job search: A survey, Economic Inquiry 14 (1976) 155-189.
  41. A. Lucena, Time-dependent traveling salesman problem -the deliveryman case, Networks 20 (6) (1990) 753-763.
  42. J. McMillan, M. Rothschild, Search, in: R. Aumann, S. Amsterdam (Eds.), Handbook of Game Theory with Economic Applications, Elsevier, 1994, pp. 905- 927 (Chapter 27).
  43. E. Minieka, The delivery man problem on a tree network, Annals of Operations Research 18 (1-4) (1989) 261-266.
  44. M.J. Osborne, A. Rubinstein, A Course in Game Theory, The MIT Press, 1994.
  45. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley-Interscience, 1994.
  46. I. Rochlin, D. Sarne, M. Laifenfeld, Coordinated exploration with a shared goal in costly environments, in: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI-2012), 2012, pp. 690-695.
  47. S. Sahni, T. Gonzales, P-complete problems and approximate solutions, in: Proceedings of the 15th Annual Symposium on Switching and Automata Theory (SWAT-1974), 1974, pp. 28-32.
  48. D. Sarne, S. Kraus, Managing parallel inquiries in agents' two-sided search, Artificial Intelligence 172 (4-5) (2008) 541-569.
  49. L.S. Shapley, Stochastic games, Proceedings of the National Academy of Sciences of the USA 39 (10) (1953) 1095-1100.
  50. D. Simchi-Levi, O. Berman, Minimizing the total flow time of n jobs on a network, IIE Transactions 23 (3) (1991) 236-244.
  51. R. Sitters, The minimum latency problem is NP-hard for weighted trees, in: Proceedings of the 9th Conference on Integer Programming and Combina- torial Optimization (IPCO-2002), 2002, pp. 230-239.
  52. S.V. Spires, S.Y. Goldsmith, Exhaustive geographic search with mobile robots along space-filling curves, in: First International Workshop on Collective Robotics, 1998, pp. 1-12.
  53. A. Stentz, The focussed D * algorithm for real-time replanning, in: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-1995), 1995, pp. 1652-1659.
  54. X. Sun, W. Yeoh, S. Koenig, Dynamic fringe-saving A * , in: Proceedings of the 8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2009), 2009, pp. 891-898.
  55. T. Tsiligirides, Heuristic methods applied to orienteering, Journal of the Operational Research Society 35 (9) (1984) 797-809.
  56. I.R. Webb, Depth-first solutions for the deliveryman problem on tree-like networks: an evaluation using a permutation model, Transportation Sci- ence 30 (2) (1996) 134-147.
  57. Martin L. Weitzman, Optimal search for the best alternative, Econometrica 47 (3) (May 1979) 641-654.
  58. R.J.V. Wiel, N.V. Sahinidis, Heuristic bounds and test problem generation for the time dependent traveling salesman problem, Transportation Sci- ence 29 (2) (1995) 167-183.
  59. T. Will, Extremal results and algorithms for degree sequences of graphs, PhD thesis, University of Illinois at Urbana-Champaign, 1993.
  60. K. Williams, J. Burdick, Multi-robot boundary coverage with plan revision, in: of the 2006 IEEE International Conference on Robotics and Automation (ICRA-2006), 2006, pp. 1716-1723.
  61. C. Yang, A dynamic programming algorithm for the travelling repairman problem, Asia-Pacific Journal of Operations Research 6 (10) (1989) 192-206.