Academia.eduAcademia.edu

Outline

Two-fold orbital digraphs and other constructions

Abstract

The authors present a natural generalization of orbital graphs. If Γ is a subgroup of S n ×S n , V an n-set, and (u,v)∈V×V, then the set Γ(u,v)={(α(u),β(v))∣(α,β)∈Γ} forms the arc set of a digraph G with vertex set V; G is called a two-fold orbital digraph. The authors focus on properties of such a G which distinguish this class from that of orbital graphs (the undirected orbital case). Special attention is given to the case where G is disconnected and to the relationship between G and its canonical double covering.

References (13)

  1. N.L. Biggs, A.T. White, Permutation groups and combinatorial struc- tures, LMS Lecture Note Series, No.33, Cambridge University Press, London, 1979.
  2. D.M. Cvetković, M. Doob, H. Sachs, Spectra of graphs, Cambridge University Press, Johann Ambrosius Barth, Heidelberg, 1995.
  3. M. Conder, P. Lorimer, C.E. Praeger, Constructions for arc-transitive digraphs, J. Austral. Math. Soc A-59 (1995), 61-80.
  4. M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437-444.
  5. J. Lauri, R. Scapellato, Topics in Graph Automorphisms and Recon- struction, Cambridge University Press, 2003.
  6. D. Marušič, R. Scapellato, Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica, 14(2)(1994), 187- 201.
  7. D. Marušič, R. Scapellato, Classification of vertex-transitive pq- digraphs, Atti. Ist. Lombardo (Rend.Sci.), A-128, no.1 (1994), 31-36.
  8. R. Nedela, M. Skoviera. Regular maps of canonical double coverings of graphs, J. Combin. Theory Ser. B, 67 (1996), 249-227.
  9. W. Pacco, R. Scapellato, Digraphs having the same canonical double covering, Discrete Math., 173 (1997), 291-296.
  10. L. Porcu, Sul raddoppio di un grafo, Atti. Ist. Lombardo (Rend.Sci.), A-110 (1976), 453-480.
  11. C.E. Praeger, M-Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Comb. Theory Ser. B 59 (1993), no.2, 245-266.
  12. C.E. Praeger, R-J. Wang, M-Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Comb. Theory Ser. B 58 (1993), no.2, 299-318.
  13. B. Zelinka, On double covers of graphs, Math. Slovaca 32 (1982), 49-54. Department of Mathematics, University of Malta Malta R. Mizzi Department of Mathematics, University of Malta Malta R. Dipartimento di Matematica Politecnico di Milano Piazza Leonardo da Vinci 32 20133 Milano, Italy