Academia.eduAcademia.edu

Outline

Symmetrical covers, decompositions and factorisations of graphs

2008

Abstract

ABSTRACT: This paper introduces three new types of combinatorial structures associated with group actions, namely symmetrical covers, symmetrical decompositions, and symmetrical factorisations of graphs. Thesestructures are related to and generalise various combinatorial objects, such as 2-designs, regular maps, near-polygonal graphs, and linear spaces. General theory is developed for each of these structures, pertinent examples and constructions are given, and a number of open research problems are posed.

References (452)

  1. W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Computation 24 (1997), 235-265.
  2. A. Breda, R. Nedela and J. Siráň, Classification of regular maps with negative prime Euler characteristic, Trans. Amer. Math. Soc. 357 (2005), 4175-4190.
  3. E. Bujalance, M. Conder and A. Costa, Pseudo-real Riemann surfaces and chiral regular maps, preprint.
  4. M.D.E. Conder, Generators for alternating and symmetric groups, J. London Math. Soc. (2) 22 (1980), 75-86.
  5. M.D.E. Conder, More on generators for alternating and symmetric groups, Quarterly J. Mathematics (Oxford) Ser. 2 32 (1981), 137-163.
  6. M.D.E. Conder, An infinite family of 5-arc-transitive cubic graphs, Ars Combinatoria 25A (1988), 95-108.
  7. M.D.E. Conder, A surprising isomorphism, Journal of Algebra 129 (1990), 494-501.
  8. M.D.E. Conder, Schreier coset graphs and their applications, RIMS Kokyuroku 794 (1992), 169-175.
  9. M.D.E. Conder, Group actions on graphs, maps and surfaces with maximum symmetry, Groups St Andrews 2001 in Oxford, London Math. Soc. Lecture Note Series, vol. 304, Cambridge University Press, 2003, pp. 63-91.
  10. M.D.E. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, preprint.
  11. M.D.E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, preprint, with associ- ated lists of computational data available at http://www.math.auckland.ac.nz/∼conder/hypermaps.html.
  12. M.D.E. Conder and P. Dobcsányi, Determination of all regular maps of small genus, J. Combinatorial Theory Series B 81 (2001), 224-242.
  13. M.D.E. Conder and P. Dobcsányi, Trivalent symmetric graphs up to 768 vertices, J. Combinatorial Mathematics & Combinatorial Computing 40 (2002), 41-63.
  14. M.D.E. Conder and P. Dobcsányi, Applications and adaptations of the low index subgroups procedure, Mathematics of Computation 74 (2005), 485-497.
  15. M.D.E. Conder, I. Hubard and T. Pisanski, Constructions for chiral polytopes, to appear in J. London Math. Society, accepted July 2007.
  16. M.D.E. Conder and R. Kulkarni, Infinite families of automorphism groups of Riemann surfaces, in: Groups and Geometry (London Math. Soc. Lecture Note Series, vol. 173), 1992, pp. 47-56.
  17. M.D.E. Conder, Y.S. Kwon and J. Širáň, Reflexibility of regular Cayley maps for abelian groups, preprint.
  18. M.D.E. Conder and P.J. Lorimer, Automorphism groups of symmetric graphs of valency 3, Journal of Combinatorial Theory Series B 47 (1989), 60-72.
  19. M.D.E. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, Journal of Algebraic Combinatorics 23 (2006), 255-294.
  20. M.D.E. Conder and D. Marušič, A tetravalent half-arc-transitive graph with nonabelian vertex stabilizer, J. Combinatorial Theory Series B 88 (2003), 67-76.
  21. M.D.E. Conder and R. Nedela, A more detailed classification of symmetric cubic graphs, preprint.
  22. M.D.E. Conder, J. Siráň and T.W. Tucker, The genera, reflexibility and simplicity of regular maps, preprint.
  23. M.D.E. Conder and C.G.Walker, Vertex-transitive graphs with arbitrarily large vertex-stabilizers, Journal of Algebraic Combinatorics 8 (1998), 29-38.
  24. M.D.E. Conder and C.G.Walker, The infinitude of 7-arc-transitive graphs, Journal of Algebra 208 (1998), 619-629.
  25. H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer Berlin (1980).
  26. D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Series B 29 (1980), 195-230.
  27. B.J. Everitt, Alternating quotients of Fuchsian groups, J. Algebra 223 (2000), 457-476.
  28. D.F. Holt, B. Eick and E.A. OBrien, Handbook of Computational Group Theory, CRC Press, 2005.
  29. P. McMullen and E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics & its Appli- cations, vol. 92, Cambridge (2002).
  30. D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer (1996).
  31. C.C. Sims, Computation with Finitely Presented Groups (Cambridge University Press, 1994).
  32. W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947), 459-474.
  33. W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.
  34. Richard Weiss, The non-existence of 8-transitive graphs, Combinatorica 1 (1981), 309-311.
  35. Richard Weiss, Presentations for (G, s)-transitive graphs of small valency, Math. Proc. Cambridge Philos. Soc. 101 (1987), 7-20.
  36. REFERENCES
  37. B. Alspach, Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree, J. Combin. Theory, 15(1973), 12-17.
  38. B. Alspach and M.Y. Xu, 1/2-transitive graphs of order 3p, Journal of Algebraic Combinatorics, 3(1994), 347-355.
  39. Y.G. Baik, Y.-Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, Systems Science and Mathematical Sciences, 13(2000), 425-431.
  40. Y.G. Baik, Y.-Q. Feng, H.S. Sim and M.Y. Xu, On the normality of Cayley graphs of Abelian groups, Algebra Colloquium, 5(1998), 297-304.
  41. N. Biggs, Algebraic Graph Theory (second edition), Cambridge University Press, Cambridge, 1993.
  42. M.D.E. Conder and D. Marušič, A tetravalent half-arc-transitive with non-abelian vertex stabilizer, J. Combin. Theory B, 88(2003), 67-76.
  43. J.D. Dixon and B. Mortimer, Permutation Groups, New York: Springer-Verlag, 1996, 97-97.
  44. E. Dobson and D. Witte, Transitive permutation groups of prime-squared degree, J. Algebraic Combin., 16(2002), 43-69.
  45. S.F. Du, Y.-Q. Feng, J.H. Kwak and M.Y. Xu, Cubic Cayley graphs on Dihedral groups, Mathematical Analysis and Applications, 7(2004), 224-234.
  46. S.F. Du, R.J. Wang and M.Y. Xu, On the normality of Cayley digraphs of order twice a prime, Australasian Journal of Combinatorics, 18(1998), 227-234.
  47. X.G. Fang, Z.P. Lu, J. Wang and M.Y. Xu, Cayley digraphs of finite simple groups of small out-valency, Commun. Algebra, 32(2004), 1201-1211.
  48. X.G. Fang, C.E. Praeger and J. Wang, On the automorphism groups of Cayley graphs of finite simple groups, J. London Math Soc., 66(2002), 563-578.
  49. X.G. Fang, C.H. Li, J. Wang and M.Y. Xu, On cubic Cayley graphs of finite simple groups, Discrete Mathematics, 244(2002), 67-75.
  50. X.G. Fang, C.H. Li and M.Y. Xu, On finite edge-transitive Cayley graphs of valency 4, Europ. J. Combin., 25(2004), 1107-1116.
  51. Y.-Q. Feng, Automorphism groups of Cayley graphs on symmetric groups with generating transposition sets, J. Combin. Theory B, 96(2006), 67-72.
  52. Y.-Q. Feng, On vertex-transitive graphs of odd prime-power order, Discrete Mathematics, 248(2002), 265-269.
  53. Y.-Q. Feng and T.P. Gao, Automorphism groups and isomorphisms of Cayley digraphs of abelian groups, Australasian Journal of Combinatorics, 16(1997), 183-187.
  54. Y.-Q. Feng, J.H. Kwak and R.J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups, Chin. Ann. Math., 22B(2001), 281-286.
  55. Y.-Q. Feng, J.H. Kwak and M.Y. Xu, s-Regular cubic Cayley graphs on abelian or dihedral groups, Institute of Mathematics and School of Mathematical Sciences, Research Report No. 53, 2000.
  56. Y.-Q.
  57. Feng, J.H. Kwak, M.Y. Xu and J.-X. Zhou, Tetravalent half-arc-transitive graphs of order p 4 , Europ. J. Combin., 29(2008), 555-567.
  58. Y.-Q. Feng, D.J. Wang and J.L. Chen, A family of nonnormal Cayley digraphs, Acta Mathematica Sinica, English Series, 17(2001), 147-152.
  59. Y.-Q. Feng, R.J. Wang and M.Y. Xu, Automorphism groups of 2-valent connected Cayley digraphs on regular p-groups, Graphs and Combinatorics, 18(2002), 253-257.
  60. Y.-Q. Feng and M.Y. Xu, Automorphism groups of tetravalent Cayley graphs on regular p-groups, Discrete Math., 305(2005), 354-360.
  61. Y.-Q. Feng and M.Y. Xu, Normality of tetravalent Cayley graphs of odd prime-cube order and its application, Acta Mathematica Sinica, English Series, 21(2005), 903-912.
  62. C.D. Godsil, On the full automorphism group of a graph, Combinatorica, 1(1981), 243-256.
  63. C.D. Godsil, G. Royle, Algebraic graph theory, Springer-Verlag, New York, 2001.
  64. D.M. Goldschmidt, Automorphisms of trivalent graphs, Ann. Math., 111(1980), 377-406.
  65. Q.X. Huang and J.X. Meng, Isomorphisms of circulant digraphs, Appl. Math.-JCU, 9B(1994), 405-409.
  66. Q.X. Huang and J.X. Meng, Automorphism groups of Cayley digraphs, in Combinatorics, Graph Theory, Algorithms and Applications, edited by Y. Alavi, D.R. Lick and Jiuqiang Liu, World Scientific, Singapore, 1994; pp. 77-81.
  67. Q.X. Huang and J.X. Meng, On the isomorphisms and automorphism groups of circulants, Graphs & Combin., 12(1996), 179-187.
  68. B. Huppert, Endliche gruppen I, Springer-Verlag, Berlin, 1979.
  69. S. Lakshmivarahan, J.S. Jwo and S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel Comput., 19(1993), 361-407.
  70. C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of Western Australia, 1966.
  71. C.H. Li, On isomorphisms of connected Cayley graphs III, Bull. Austral. Math. Soc., 58(1998), 137-145.
  72. C.H. Li, Z.P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory B, 96(2006), 164-181.
  73. Z.P. Lu, On the automorphism groups of biCayley graphs, Beijing Daxue Xuebao, 39(2003), no. 1, 1-5.
  74. Z.P. Lu, C.Q. Wang and M.Y Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of A n , Ars Combin., 80(2006), 177-187.
  75. Z.P. Lu and M.Y. Xu, On the normality of Cayley graphs of order pq, Australasian Journal of Combinatorics, 27 (2003), 81-93.
  76. A. Malnič, Group actions, coverings and lifts of automorphisms, Discrete Mathematics, 182(1998), 203-218.
  77. A. Malnič and D. Marušič, Constructing 4-valent 1/2-transitive graphs with a non-abelian automorphism group, J. Combin. Theory B, 75(1999), 46-55.
  78. A. Malnič and D. Marušič, Constructing 1 2 -arc-transitive graphs of valency 4 and vertex stabilizer Z 2 ×Z 2 , Discrete Math., 245(2002), 203-216.
  79. J.X. Meng and B. Ying, Normal minimal Cayley digraphsf of abelian groups, Europ. J. Combinatorics, 21(2000), 523-528.
  80. J.X. Meng and Q.X. Huang, The automorphism groups of minimal infinite circulant digraphs, Europ. J. Combin., 18(1997), 425-429.
  81. C.E. Praeger, Finite normal edge-transitive graphs, Bull. Austral. Math. Soc., 60(1999), 207-220.
  82. C.E. Praeger, R.J. Wang and M.Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B, 58(1993), 299-318.
  83. C.E. Praeger and M.Y. Xu, Vertex primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B, 59(1993), 245-266.
  84. H.P. Qu, On symmetry of Cayley graphs of finite simple groups of valency 4, Ph.D. Thesis, Peking University, 2001.
  85. C.Q. Wang, D.J. Wang and M.Y. Xu, On normal Cayley graphs of finite groups, Science in China A, 28(1998), 131-139.
  86. C.Q. Wang and M.Y. Xu, Non-normal one-regular and 4-valent Cayley graphs of dihedral groups D 2n , Europ. J. Combin., 27(2006), 750-766.
  87. R.J. Wang, 1 2 -transitive graphs of order a product of two distinct primes, Communications in Algebra, 22(1994), 915-927.
  88. R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B, 58(1993), 197-216.
  89. M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Mathematics, 182(1998), 309-319.
  90. M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combinatorics, 1(1992), 275-292.
  91. M.Y. Xu and S.J. Xu, Symmetry properties of Cayley graphs of small valencies on the alternating group A 5 , Science in China A, 47(2004), 593-604.
  92. M.Y. Xu, Q.H. Zhang and J.X. Zhou, On the normality of Cayley digraphs on abelian groups (Chinese), Systems Science and Mathematical Sciences, 25(2005), 700-710.
  93. S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups, Europ. J. Combinatorics, 26(2005), 133-143.
  94. S.J. Xu, X.G. Fang, J. Wang and M.Y. Xu, 5-Arc transitive cubic Cayley graphs on finite simple groups, Europ. J. Combinatorics, 28(2007), 1023-1036.
  95. C.X. Zhou and Y.-Q. Feng, Automorphism groups of connected cubic Cayley graphs of order 4p, Algebra Colloquium, 14(2007), 351-359.
  96. J.X. Zhou and Y.-Q. Feng, Two sufficient conditions for non-normal Cayley graphs and their applications, Science in China A, 50(2007), 201-216.
  97. REFERENCES
  98. J. Bamberg, G. Pearce and C. E. Praeger, Transitive decompositions of graph products: rank 3 product action type, J. Group Theory, 11 (2008), 185-228.
  99. A. Bonisoli, M. Buratti and G. Mazzuoccolo, Doubly transitive 2-factorisations, J. Combin. Des. 15 (2007), 120-132.
  100. J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
  101. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user lan- guage, J. Symb. Comp. 24 3/4 (1997), 235-265. Also see the MAGMA home page at http://www.maths.usyd.edu.au:8000/u/magma/.
  102. F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36 (1990), 89-94.
  103. P. J. Cameron and G. Korchmáros, One-factorizations of complete graphs with a doubly transitive automorphism group. Bull. London Math. Soc. 25 (1993), 1-6.
  104. P. J. Cameron, G. R. Omidi and B. Tayeh-Rezaie, 3-Designs from PGL(2, q), Electron. J. Combin. 13 (2006) #R50.
  105. A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Primitive decompositions of Johnson graphs, J. Combin. Theory, Series A, to appear.
  106. J. D. Dixon and B. Mortimer, Permutation groups. Graduate Texts in Mathematics, 163. Springer- Verlag, New York, 1996.
  107. X. G. Fang, C. H. Li and J. Wang, On transitive 1-factorizations of arc-transitive graphs, J. Combin. Theory Series A, 114 (2007), 692-703.
  108. F. Harary, R. W. Robinson and N. C. Wormald, Isomorphic factorisations. I. Complete graphs, Trans. Amer. Math. Soc. 242 (1978), pp. 243-260.
  109. F. Harary and R. W. Robinson, Isomorphic factorisations X: unsolved problems, J. Graph Theory 9 (1985), pp. 67-86.
  110. K. Heinrich, Graph decompositions and designs, in: The CRC Handbook of Combinatorial Designs, Charles J. Colbourn and Jeffrey H. Dinitz, (Editors), CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996, pp. 361-366.
  111. M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graphs and digraphs, European J. Combin. 27 (2006), 11-37.
  112. M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of complete multipartite graphs, Discrete Math. 307 (2007), 415-431.
  113. M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graph products, to appear in Discrete Math.
  114. C. Greenhill, The cycle double cover conjecture, Austral. Math. Soc. Gaz. 32 (2005), 169-172.
  115. F. Jaeger, A survey on the cycle double cover conjecture, in: Cycles in graphs, B. Alspach and C. D. Godsil (Editors) Annals of Discrete Math. 27 North-Holland Amsterdam 1985, 1-12.
  116. W. M. Kantor, Homogeneous designs and geometric lattices. J. Comb. Theory (A) 38 (1985), 66-74.
  117. C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge- transitive factors, J. Alg. Combin., doi: 10.1007/s10801-008-0127-2. Published on-line February 27, 2008.
  118. C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc. 355 (2003), 637-653.
  119. C. H. Li, C. E. Praeger, A. Venkatesh, and S. Zhou, Finite locally-quasiprimitive graphs, Discrete Math. 246 (2002), 197-218.
  120. C. H. Li and A. Seress, Symmetrical path-cycle covers of a graph and polygonal graphs, J. Combin. Theory Series A 114 (2007), 35-51.
  121. T. K. Lim, Edge-transitive homogeneous factorisations of complete graphs, Ph.D. Thesis, The University of Western Australia, 2003.
  122. D. K. Maslen, M. E. Orrison and D. N. Rockmore, Computing isotypic projections with the Lanczos iteration, SIAM J. Matrix Anal. Appl. 25 (2004), 784-803.
  123. G. Pearce, Transitive decompositions of graphs and their links with geometry and origami, submitted.
  124. M. Perkel, Near-polygonal graphs. Ars Combin. 26A (1988), 149-170.
  125. M. Perkel and C. E. Praeger, Polygonal graphs: new families and an approach to their analysis, Congr. Numer. 124 (1997), 161-173.
  126. C. E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19A (1985), 149-163.
  127. R. W. Robinson, Isomorphic factorisations. VI. Automorphisms. in: Combinatorial mathematics, VI (Proc. Sixth Austral. Conf., Univ. New England, Armidale, 1978), pp. 127-136, Lecture Notes in Math., 748, Springer, Berlin, 1979.
  128. T. Sibley, On classifying finite edge colored graphs with two transitive automorphism groups, J. Combin. Theory Series B 90 (2004), 121-138.
  129. R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Proc. 5th British Comb. Conf. (1975), 647-659.
  130. B. Zelinka, The decomposition of a complete graph according to a given group, Mat. Časopis Sloven. Akad. Vied. 17 (1967), 234-239.
  131. J. H. Kwak and Y. S. Kwon, Classification of reflexive regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs, Discrete Math. 308(2008) 2156-2166.
  132. J. H. Kwak and Y. S. Kwon, Classification of nonorientable regular embeddings of complete bipartite graphs, submitted.
  133. L. D. James and G. A. Jones, Regular orientable imbeddings of complete graphs, J. Combinatorial Theory Ser. B 39 (1985), 353-367.
  134. S-F. Du, J. H. Kwak and R. Nedela, Classification of regular embeddings of hypercubes of odd dimension, Discrete Math. 307 (2007), 119-124.
  135. G. A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, European J. Combin. 26 (2005), 417-435.
  136. Y. S. Kwon, New regular embeddings of n-cube, Q n , J. Graph Theory 46 (2004), 297-312.
  137. N. L. Biggs, Automorphisms of imbedded graphs, J. Combinatorial Theory Ser. B 11 (1971), 132-138.
  138. N. L. Biggs and A. T. White, Permutation Groups and Combinatorial Structures, London Math. Soc. Lecture Note Series 33, Cambridge University Press, Cambridge, 1979.
  139. H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Springer- Verlag, Berlin-Heidelberg-New York, 1972.
  140. A. Grothendieck, Esquisse d'un programme, in Geometric Galois Actions 1, London Math. Soc. Lec- ture Note Ser. 242, Cambridge University Press, Cambridge, 1997, pp. 5-48. [English translation, pp. 243-283.]
  141. R. Nedela, M. Škoviera and A. Zlatoš, Regular embeddings of complete bipartite graphs, Discrete Math. 258 (2002), 379-381.
  142. J. H. Kwak and Y. S. Kwon, Regular orientable embeddings of complete bipartite graphs, J. Graph Theory 50 (2005), 105-122.
  143. G. A. Jones, R. Nedela and M. Škoviera, Complete bipartite graphs with a unique regular embedding, J. Combinatorial Theory Ser. B, to appear.
  144. J. S. Rose, A Course in Group Theory, Cambridge University Press, 1978.
  145. P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78.
  146. B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1953), 243-264.
  147. G. A. Jones, R. Nedela and M. Škoviera, Regular embeddings of K n,n where n is an odd prime power, European J. Combinatorics 28 (2007), 1863-1875.
  148. S-F. Du, G. A. Jones, J. H. Kwak, R. Nedela and M. Škoviera, Regular embeddings of K n,n where n is a power of 2. I: Metacyclic case, European J. Combinatorics, 28 (2007), no. 6, 1595-1609.
  149. S-F. Du, G. A. Jones, J. H. Kwak, R. Nedela and M. Škoviera, Regular embeddings of K n,n where n is a power of 2. II: Non-metacyclic case, in preparation.
  150. H. Wielandt, Über das Produkt von paarweise vertauschbaren nilpotenten Gruppen, Math. Z. 55 (1951), 1-7.
  151. N. Itô, Über das produkt von zwei abelschen Gruppen, Math. Z. 62 (1955), 400-401.
  152. P. Hall, A note on soluble groups, J. London Math. Soc. 3 (1928), 98-105.
  153. G. A. Jones, Regular embeddings of complete bipartite graphs: classification and enumeration, preprint.
  154. P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungary 14 (1963), 295-315.
  155. R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964), 331-340.
  156. P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts Series 45, Cambridge University Press, Cambridge, 1999.
  157. J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics 163, Springer, New York, 1996.
  158. R. Nedela, private communication, April 2006.
  159. R. Jajcay and J. Širáň, Skew-morphisms of regular Cayley maps, Discrete Math. 244 (2002), 167-179.
  160. G. A. Jones, Maps on surfaces and Galois groups, Math. Slovaca 47 (1997), 1-33.
  161. G. A. Jones and D. Singerman, Belyȋ functions, hypermaps and Galois groups, Bull. London Math. Soc. 28 (1996), 561-590.
  162. S. K. Lando and A. K. Zvonkin, Graphs on Surfaces and their Applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004.
  163. G. V. Belyȋ, Galois extensions of a maximal cyclotomic field (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 267-276, 479.
  164. B. Koeck, Belyi's theorem revisited, Beiträge Algebra Geom. 45 (2004), 253-265.
  165. J. Wolfart, ABC for polynomials, dessins d'enfants and uniformization-a survey, in Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20, Franz Steiner Verlag Stuttgart, Stuttgart, 2006, pp. 313-345.
  166. G. A. Jones, M. Streit and J. Wolfart, Galois action on families of generalised Fermat curves, J. Algebra 307 (2007), 829-840.
  167. G. A. Jones and M. Streit, Galois groups, monodromy groups and cartographic groups, in Geometric Galois Actions 2, London Math. Soc. Lecture Note Ser. 243, Cambridge University Press, Cambridge, 1997, pp. 25-65.
  168. A. Coste, G. A. Jones, M. Streit and J. Wolfart, Generalised Fermat hypermaps and Galois orbits, submitted, ArXiv math.AG/0606712.
  169. S. E. Wilson, Operators over regular maps, Pacific J. Math. 81 (1979), 559-568. REFERENCES
  170. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. Outer automorphism groups of non-orientable seifert 3-manifold groups. Preprint.
  171. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. Residual finiteness of outer automorphism groups of certain pinched 1-relator groups. J. Algebra, 246(2):849-858, 2001.
  172. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. On the residual finiteness of Out(π 1 (M )) of certain Seifert manifolds. Algebra Colloq., 10(2):121-126, 2003.
  173. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. Conjugacy separability of certain seifert 3-manifold groups. J. Algebra, 285(2):481-507, 2005.
  174. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. Residual finiteness of outer automorphism groups of finitely generated non-triangle fuchsian groups. Internat. J. Algebra Comput., 15(1):59-72, 2005.
  175. R.B.J.T. Allenby, G. Kim, and C.Y. Tang. Outer automorphism groups of certain orientable seifert 3-manifold groups. In Contemp. Math., Amer. Math. Soc., 421:15-22, 2006.
  176. R.B.J.T. Allenby and C.Y. Tang. The residual finiteness of some one-relator groups with torsion. J. Algebra, 71(1):132-140, 1981.
  177. R.B.J.T. Allenby and C.Y. Tang. Residually finite one-relator groups with torsion. Arch. Math., 37:97-105, 1981.
  178. R.B.J.T. Allenby and C.Y. Tang. On the residual finiteness of certain polygonal products. Canad. Math. Bull., 32(1):11-17, 1989.
  179. R.B.J.T. Allenby and C.Y. Tang. Subgroup separability of generalized free products of free-by-finite groups. Canad. Math. Bull., 36(4):385-389, 1993.
  180. G. Baumslag. Automorphism groups of residually finite groups. J. London Math. Soc., 38:117-118, 1963.
  181. G. Baumslag. On the residual finiteness of generalized free products of nilpotent groups. Trans. Amer. Math. Soc., 106:193-209, 1963.
  182. G. Baumslag. Residually finite one-relator groups. Bull. Amer. Math. Soc., 73:618-620, 1967.
  183. G. Baumslag and D. Solitar. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc., 38:199-201, 1962.
  184. N. Blackburn. Conjugacy in nilpotent groups. Proc. Amer. Math. Soc., 16:143-148, 1965.
  185. A.M. Brunner, R.G. Burns, and D. Solitar. The subgroup separability of free products of two free groups with cyclic amalgamation. Contemp. Math., Amer. Math. Soc., 33:90-115, 1984.
  186. R. Camm. Simple free products. J. London Math. Soc., 28:66-76, 1953.
  187. M. Dehn. Uber unendliche diskontinuerliche gruppen. Math. Ann., 71:116-144, 1912.
  188. J.L. Dyer. Separating conjugates in amalgamated free products and HNN extensions. J. Austral. Math. Soc. Ser. A, 29(1):35-51, 1980.
  189. B. Fine and G. Rosenberger. Conjugacy separability of Fuchsian groups and related questions. Contemp. Math., Amer. Math. Soc., 109:11-18, 1990.
  190. B. Fine and G. Rosenberger. Groups of F-type: Reflections and Extensions. In Group Theory Proc. of the Biennial Ohio State-Dennison Conference, pages 92-127. World Sci. Pub. Co., Singapore, 1993.
  191. E.K. Grossman. On the residual finiteness of certain mapping class groups. J. London Math. Soc. (2), 9:160-164, 1974.
  192. K.W. Gruenberg. Residual properties of infinite soluble groups. Proc. London Math. Soc. (3), 7:29-62, 1957.
  193. M. Hall, Jr. Coset representations in free groups. Trans. Amer. Math. Soc., 67:421-432, 1949.
  194. K.A. Hirsch. On infinite soluble groups III. Proc. London Math. Soc. (2), 44:184-194, 1946.
  195. G. Kim, J. McCarron, and C.Y. Tang. Adjoining roots to conjugacy separable groups. J. Algebra, 176(2):327-345, 1995.
  196. G. Kim and C.Y. Tang. Outer automorphism groups of certain 1-relator groups. Preprint.
  197. G. Kim and C.Y. Tang. On the residual finiteness of polygonal products of nilpotent groups. Canad. Math. Bull., 35(3):390-399, 1992.
  198. G. Kim and C.Y. Tang. Conjugacy separability of HNN-extensions of abelian groups. Arch. Math., 67:353-359, 1996.
  199. G. Kim and C.Y. Tang. A criterion for the conjugacy separability of amalgamated free products of conjugacy separable groups. J. Algebra, 184:1052-1072, 1996.
  200. G. Kim and C.Y. Tang. Conjugacy separability of generalized free products of finite extensions of residually nilpotent groups. In Group Theory (Proc. of the '96 Beijing Int'l Symposium), pages 10-24. Springer-Verlag, 1998.
  201. G. Kim and C.Y. Tang. A criterion for the conjugacy separability of certain HNN-extensions of groups. J. Algebra, 222:574-594, 1999.
  202. G. Kim and C.Y. Tang. Cyclic subgroup separability of HNN-extensions with cyclic associated sub- groups. Canad. Math. Bull., 42(3):335-343, 1999.
  203. G. Kim and C.Y. Tang. Separability properties of certain polygonal products of groups. J. Korean Math. Soc., 39(3):461-494, 2002.
  204. G. Kim and C.Y. Tang. Separability properties of certain tree products of groups. J. Algebra, 251:323-349, 2002.
  205. W. Magnus. Das Identitäts problem für Gruppen mit einer definierenden Relation. Math. Ann., 106:295-307, 1932.
  206. W. Magnus. Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann., 111:259-280, 1935.
  207. A.I. Mal'cev. Homomorphisms of finite groups. Ivanov Gos. Ped. Inst. Ucen. Zap. Uchen. Zap. Karel. Ped. Inst. Ser. Fiz.-Mat. Nauk, 18:49-60, 1958.
  208. J.C.C. MeKinsey. The decision problem for some classes of sentences without quantifiers. J. Symb. Logic, 8:61-76, 1943.
  209. A.W. Mostowski. On the decidability of some problems in special classes of groups. Fund. Math., 59:123-135, 1966.
  210. G.A. Niblo. H.N.N. extensions of a free group by Z which are subgroup separable. Proc. London Math. Soc., 61:18-32, 1990.
  211. G.A. Niblo. Separability properties of free groups and surface groups. J. Pure and Appl. Algebra, 78:77-84, 1992.
  212. L. Ribes, D. Segal, and P.A. Zalesskii. Conjugacy separability and free products of groups with cyclic amalgamation. J. London Math. Soc., 57(3):609-628, 1998.
  213. P. Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc., 17:555-565, 1978.
  214. J.P. Serre. Trees. Springer-Verlag, Berlin-Heidelberg-New York, 1980.
  215. P.F. Stebe. Residual finiteness of a class of knot groups. Comm. Pure. Appl. Math., 21:563-583, 1968.
  216. P.F. Stebe. Conjugacy separability of groups of integer matrices. Proc. Amer. Math. Soc., 32:1-7, 1972.
  217. W.F. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 6:357-381, 1982.
  218. J.S. Wilson and P.A. Zalesskii. Conjugacy separability of certain Bianchi groups and HNN extensions. Math. Proc. Camb. Phil. Soc., 123:227-242, 1998.
  219. Daniel Wise. Residual finiteness of quasi-positive 1-relator groups. J. London Math. Soc. (2), 66(2):334-350, 2002.
  220. Daniel Wise. A residually finite version of Rips's constructions. Bull. London Math. Soc., 35:23-29, 2003. REFERENCES
  221. W.S. Massey, A basic course in algebraic topology, Springer-Verlag (1991).
  222. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
  223. R.P. Stanley, Enumerative combinatorics, Volume 2, Cambridge University Press, Cambridge, 1999, xii+581 pp.
  224. A.D. Mednykh and G.G. Pozdnyakova, Number of nonequivalent coverings over a non-orientable compact surface, Siber. Math. J. 27 (1986), 99-106.
  225. A.D. Mednykh, On the number of subgroups in the fundamental group of a closed surface, Comm. Algebra 16 (1988), 2137-2148.
  226. V. Liskovets and A. Mednykh, On the number of disconnected coverings over manifold, Preprint (2007).
  227. T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and Hodge integrals, CR Acad. Sci. Paris Ser. I Math. 328 (12) (1999) 1175-1180. math.AG/9902104;
  228. T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2) (2001) 297-327, math.AG/0004096.
  229. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163(2) (2006), 517-560.
  230. J.H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
  231. M. Hall, Jr., Subgroups of finite index in free groups, Canadian J. Math. 1 (1949), 187-190.
  232. V. Liskovets, On the enumeration of subgroups of a free group, Dokl. Akad. Nauk BSSR. 15 (1971), 6-9.
  233. M. Hofmeister, A note on counting connected graph covering projections, SIAM J. Discrete Math. 11 (1998), 286-292.
  234. J.H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996), 105-109.
  235. J.H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998), 273-285.
  236. G. Jones and V. Liskovets, Enumarating subgroups of finite index, in: Proceedings of Com 2 MaC Mini-Workshop on Hurwitz Theory and Ramifications (January 13-18, 2003), editors J.H. Kwak and A.D. Mednykh, Combinatorial and Computational Mathematics Center, Pohang University of Science and Technology, Pohang, 2003.
  237. G.A. Jones, Counting subgroups of non-Euclidean crystallographic groups, Math. Scand. 84 (1999), 23-39.
  238. A.D. Mednykh, On unramified coverings of compact Riemann surfaces, Soviet Math. Dokl. 20 (1979), 85-88.
  239. I.P. Goulden, J.H. Kwak and J. Lee, Enumerating branched orientable surface coverings over a non- orientable surface, Discrete Math. 303 (2005), 42-55.
  240. V. Liskovets, Reductive enumeration under mutually orthogonal group actions, Acta Applicandae Mathematicae 52 (1998), 91-120.
  241. A.D. Mednykh, A New Method for Counting Coverings over Manifold with Finitely Generated Group, Doklady Mathematics 74(1) (2006), 498-502.
  242. H. Tamanoi, Generalized orbifold Euler characteristics of symmetric products and equivariant Morava K-theory, Algebr. Geom. Topol, 1 (2001), 115-141.
  243. H. Tamanoi, Generalized orbifold Euler characteristics of symmetric orbifolds and covering spaces. Algebr. Geom. Topol, 3 (2003), 791-856.
  244. A. Breda, A.D. Mednykh, R. Nedela, Counting unrooted unsensed maps on closed orientable surface, to appear.
  245. A.D. Mednykh, R. Nedela, Counting unrooted hypermaps on closed orientable surface, Proceedings of the 18th International Conference on Formal Power Series and Algebraic Combinatorics, June 19-23, 2006, San Diego, California, (2006), 1-19.
  246. J.H. Kwak, A.D. Mednykh and R. Nedela, Enumeration of orientable coverings over a non-orientable manifold, to appear in Discrete Mathematics and Theoretical Computer Science.
  247. I.P. Goulden, J.H. Kwak and J. Lee, Distribution of regular branched surface coverings, European J. Combin. 25 (2004), 437-455.
  248. V. Liskovets and A. Mednykh, The number of non-equivalent unbranched n-fold coverings of the Klein bottle., preprint (2002), com2mac.postech.ac.kr/papers/2002/02-06.pdf
  249. M. Petkovšek, T. Pisanski, Counting Disconnected Structures: Chemical Trees, Fullerenes, I-graphs, and others, Croatica Chemica Acta 78(4) (2005), 563-567.
  250. On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/njas/sequences/
  251. P. Hall, The Euclidean functions of a group, Quart. J. Math. Oxford 7 (1936), 134-151.
  252. J.H. Kwak and A.D. Mednykh, Enumerating branched coverings over surfaces with boundaries, European Journal of Combinatorics 25 (2004), 23-34.
  253. J.H. Kwak, J. Lee and Y. Shin, Balanced coverings of a signed graph and some regular branched orientable surface coverings over a non-orientable surface, Discrete Math. 275 (2004), 177-193.
  254. A. Hurwitz, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-61.
  255. J.L. Gross and T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.
  256. J.H. Kwak, S. Kim and J. Lee, Distributions of regular branched prime-fold coverings of surfaces, Discrete Math. 156 (1996), 141-170.
  257. J.H. Kwak, J. Lee and A.D. Mednykh, Enumerating surface branched coverings from unbranched ones, LMS J. Comput. Math. 6 (2003), 89-104.
  258. G. James and M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993.
  259. W. Ledermann, Introduction to characters (2nd ed.), Cambridge University Press, Cambridge, 1987.
  260. A. Hurwitz, Über die Anzahl der Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1902), 53-66.
  261. H. Rohrl, Unbounded coverings of Riemann surfaces and extensions of rings of meromorphic functions, Trans. Amer. Math. Soc. 107(2) (1963), 320-346.
  262. A.D. Mednykh, Hurwitz problem on the number of nonequivalent coverings of a compact Riemann surface, Siber. Math. J. 23 (1982), 415-420.
  263. A.D. Mednykh, Nonequivalent coverings over Riemann surfaces with a prescribed ramification type, Siber. Mat. Zh. 25 (1984), 606-625.
  264. A.D. Mednykh, Branched coverings of Riemann surfaces whose branch orders coincide with multiplicity, Comm. Algebra 18(5) (1990), 1517-1533.
  265. J.H. Kwak and J. Lee, Distributions of branched D p -coverings of surfaces, Discrete Math. 183 (1998), 193-212.
  266. I.P. Goulden and D.M. Jackson, The number of ramified coverings of the sphere by the double torus, and a general form for higher genera, J. Combinatorial Theory (A) 88, 1999, 259-275.
  267. I.P. Goulden and D.M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, J. Combinatorial Theory (A) 88, 1999, 246-258.
  268. I.P. Goulden, D.M. Jackson and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Annals of Combinatorics 4, 2000, 27-46.
  269. J.H. Kwak and A.D. Mednykh, Enumeration of branched coverings of closed orientable surfaces whose branch orders coincide with multiplicity, Studia Scientiarum Mathematicarum Hungarica 44 (2007), 215-223.
  270. C.L. Ezell, Branch point structure of covering maps onto nonorientable surfaces, Trans. Amer. Math. Soc. 243 (1978), 123-133.
  271. J. Lee and J. Kim, Enumeration of the branched mZ p -coverings of surfaces, European J. Combin. 22 (2001), 1125-1138.
  272. S. Zdravkovska, The topological classification of polynomial mappings. Uspehi Mat. Nauk 25 154(4) (1970), 179-180.
  273. A.G. Khovanskii, S. Zdravkovska, Branched covers of S 2 and braid groups. J. Knot Theory Ramifications 5 (1996), no. 1, 55-75.
  274. A.N. Protopopov, Homeomorphisms of branched coverings of a two-dimensional sphere, Dokl. Akad. Nauk SSSR 290(4) (1986), 792-795.
  275. A.N. Protopopov, Topological classification of branched coverings of a two-dimensional sphere, J. Soviet Math. 52(1) (1990), 2832-2846.
  276. G.A. Jones, A. Zvonkin, Alexander, Orbits of braid groups on cacti. Mosc. Math. J. 2 (2002), no. 1, 127-160, 200.
  277. M. Tanabe, Bounds on the number of holomorphic maps of compact Riemann surfaces, Proc. Amer. Math. Soc. 133(10) (2005), 3057-3064.
  278. H. Martens, Observations on morphisms of closed Riemann surfaces, Bull. London Math. Soc. 10 (1978), 209-212.
  279. H. Martens, Observations on morphisms of closed Riemann surfaces II, Bull. London Math. Soc. 20 (1988), 253-254.
  280. A. Howard, A.J. Sommese, On the theorem of de Franchis, Ann. Scoula. Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 429-436.
  281. E. Pervova, C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data, I. Algebr. Geom. Topol. 6 (2006), 1957-1985.
  282. J.W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372.
  283. J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley (1987).
  284. A.D. Mednykh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Soviet Math. Dokl. 19 (1978), 318-320.
  285. S. Monni, Jun S. Song, Yun S. Song, The Hurwitz enumeration problem of branched covers and Hodge integrals, J. Geom. Phys. 50 (2004), no. 1-4, 223-256.
  286. M. Skoviera, A contribution to the theory of voltage graphs, Discrete Math. 61 (1986), 281-292.
  287. V.D. Tonchev, Combinatorial Configurations Designs, Codes, Graphs, English version, Wiley (1988). REFERENCES
  288. V.I. Arnold, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with an identical number of vertices and edges, (Russian) Funktional. Anal. i Prilozhen. 30 (1996), no. 1, 1-17, 96; translation in Funct. Anal. Appl. 30 (1996), no. 1, 1-14.
  289. M. Bousquet-Mélou, G. Schaeffer, Enumeration of planar constellations, Adv. in Apl. Math., 24, 337-368 (2000).
  290. E. Date, M. Kashivara, M. Jimbo, T. Miwa, Transformation groups for soliton equations, in: Proc. of RIMS Symposium on Non-Linear Integrable Systems, Singapore, World Science Publ. Co., 39-119 (1983).
  291. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. No. 36, 75-109 (1969).
  292. T. Ekedahl, S.K. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and Hodge integrals, C.R. Acad. Sci. Paris Sér I Math., 328, 1175-1180 (1999).
  293. T. Ekedahl, S.K. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., 146, 297-327 (2001).
  294. L. Euler, De serie Lambertina plurimisque eius insignibus proprietaribus, Acta academiae scientarum Petropolitanae 1779: II, 1783, 29-51.
  295. I.P. Goulden, D.M. Jackson, Transitive factorisation into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc., 125, no. 1, 51-60 (1997).
  296. I.P. Goulden, D.M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, J. Comb. Theory, Ser. A, 88, 246-258 (1999).
  297. I.P. Goulden, D.M. Jackson, R. Vakil, The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals, Proc. London Math. Soc. (3), 83, 563-581 (2001).
  298. I.P. Goulden, L.G. Serrano, A simple recurrence for covers of the sphere with branch points of arbitrary ramification, Annals of Combinatorics, 10, 431-441 (2006).
  299. A. Goupil, G. Schaeffer, Factoring N -Cycles and Counting Maps of Given Genus, Europ. J. Combina- torics, 19, 819-834 (1998).
  300. A. Hurwitz, Über Riemann'sche Flächen mit gegebenen Verzweigungpunkten, Math. Ann., 39, 1-61 (1891).
  301. A. Hurwitz, Über die Anzal der Riemann'sche Flächen mit gegebenen Verzweigungpunkten, Math. Ann., 55, 51-60 (1902).
  302. D.M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Trans. AMS, 299, 785-801 (1987).
  303. V. Kac, A. Schwarz, Geometric interpretation for the partition function of 2D gravity, Phys. Lett. B, 257, no. 3-4, 329-334 (1991).
  304. M. Kazarian, On combinatorial computations of Hurwitz numbers (after D. Zvonkine), preprint (2006).
  305. M. Kazarian, S. Lando, An algebro-geometric proof of Witten's conjecture, J. Amer. Math. Soc., 20, 1079-1089 (2007).
  306. M. Kazarian, S. Lando, On intersection theory on Hurwitz spaces, Izv. Ross. Akad. Nauk Ser. Mat., 68, no. 5, 91-122 (2004); translation in Izv. Math. 68, no. 5, 935-964 (2004).
  307. S. Kerov, G. Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér I Math., 319, no. 2, 121-126 (1994).
  308. M. Kontsevich, Intersection theory on the moduli space of curves and the Airy function, Comm. Math. Phys., 147, 1-23 (1992).
  309. S.K. Lando, A.K. Zvonkin, Graphs on surfaces and their applications, Springer (2004).
  310. S.K. Lando, D. Zvonkine, On multiplicities of the Lyashko-Looijenga mapping on strata of the discrim- inant, Funktsional. Anal. i Prilozhen., 33, no. 3, 21-34, (1999); translation in Funct. Anal. Appl., 33, no. 3, 178-188 (1999).
  311. S.K. Lando, D. Zvonkine, Counting Ramified Coverings and Intersection Theory on Spaces of Rational Functions I (Cohomology of Hurwitz Spaces), Moscow Math. J., 7 (1), 85-107 (2007).
  312. A.D. Mednykh, Nonequivalent coverings of Riemann surfaces with a prescribed ramification type, Siber. Math. J., 25, 606-625 (1984).
  313. M. Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc., 20, no. 1, 1-23 (2007).
  314. A. Okounkov, Toda equations for Hurtwitz numbers, Math. Res. Lett. 7, no. 4, 447-453 (2000).
  315. A. Okounkov, G. Olshanski, Shifted Schur functions, Algebra i Analiz, 9, no. 2, 73-146 (1997); translation in St.Petersburg Math. J., 9, no. 2, 239-300 (1998).
  316. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models I, math.AG/0101147 (2001).
  317. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2), 163, no. 2, 517-560 (2006).
  318. Okounkov, A.; Pandharipande, R. The equivariant Gromov-Witten theory of P 1 . Ann. of Math. (2) 163 (2006), no. 2, 561-605.
  319. R. Pandharipande, The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53, no. 1, 59-74 (2000).
  320. B.E. Sagan, The Symmetric Group, Springer, 2001.
  321. M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann man- ifolds, in: Nonlinear partial differential equations in applied science, North-Holland, Amsterdam, 259-271 (1983).
  322. G. Segal, G. Wilson, Loop groups and equations of the KdV type, Inst. Hautes Études Sci. Publ. Math., no. 61, 5-65 (1985).
  323. B. Shapiro, M. Shapiro, A. Vainshtein, Ramified coverings of S 2 with one degenerate branching point and enumeration of edge-ordered graphs, in: Topics in Singularity Theory, Amer. Math. Soc., 219-227 (1997).
  324. K. Ueno, K. Takasaki, Toda lattice hierarchy, in: Adv. Studies in Pure Math., 4, Group representations and Systems of Differential Equations, 1-95 (1984).
  325. E. Witten, Two-dimensional gravity and intersection theory on moduli spaces, Surveys in Differential Geometry, vol. 1, 243-269 (1991).
  326. D. Zvonkine, An algebra of power series arising in the intersection theory of moduli spaces of curves and in the enumeration of ramified coverings of the sphere, math.AG/0403092 (2004).
  327. D. Zvonkine, Enumeration of ramified coverings of the sphere and 2-dimensional gravity, math.AG/0506248 (2005).
  328. R.E. Block, On the orbits of collineation groups, Math. Z., 96(1967), 33-49.
  329. H, D.R. Hughes and F.S. Piper, Projective Planes, Springer-Verlag, Berlin Heidelberg New York, 1973.
  330. N. Bourbaki, Groupes et algebres de Lie, Hermann, Paris, 1968. Chapters IV, V and VI.
  331. F. Buekenhout, A. Delandtsheer, J. Doyen, P. Kleidman, M.W. Liebeck and J. Saxl, Linear spaces with flag transitive automorphism groups, Geom. Dedicata, 36(1990), 89-94.
  332. A. Camina, The socle of automorphism groups of linear spaces, Bull. London Math. Soc., (3) 28(1996), 269-272.
  333. A. Camina, P.M. Neumann and C. Praeger, Alternating groups acting on finite linear spaces, Proc. London Math. Soc., 87(2003), 29-53.
  334. A. Camina and J. Siemons, Block transitive automorphism groups of 2 -(v, k, 1) block designs, J. Comb. Theory, Series A, 51(1989), 268-276.
  335. A. Camina and T.M. Gagen, Block transitive automorphism groups of designs, J. of Algebra, 86(1984), 549-554.
  336. A. Camina and C. Praeger, Line-transitive automorphism groups of linear spaces, Bull. London Math. Soc., 25(1993), 309-313.
  337. A. Camina and C. Praeger, Line-transitive, point-quasiprimitive automorphism groups of finite linear spaces are affine or almost simple, Aequationes Math., 61(2001), 221-232.
  338. R.W. Carter, Simple groups of Lie type, Wiley-Interscience, New York, 1972.
  339. A. Delandtsheer, Line-transitive automorphism groups of finite linear spaces, European J. Combin., 10(1989), 161-169.
  340. A. Delandtsheer, Finite flag-transitive linear spaces with alternating socle, in ''Algebraic Cmbinatorics and Applications (Gösseseinstein,1999)'' (A. Betten et al Ed.) Lecture Notes in Computer Sciences and Engineering, pp. 79-88. Springer-Verlag, Berlin, 2001.
  341. A. Delandtsheer, J. Doyen, J. Siemons and C. Tamburini, Doubly transitive 2 -(v, k, 1) designs, J. of Comb. Theory, Series A, 43(1986) 140-145.
  342. W. Fang and H. Li, A generalization of the Camina-Gagen theorem (in Chinese), J. of Math. (Wuhan), 12(1991), 437-442.
  343. N. Gill, PSL(3, q) and line transitive linear spaces, Beitragen zur Algebra and Geometries, To appear.
  344. N. Gill, Linear spaces with significant characteristic prime, Innovations in Incidence Geometry, 10(2006), 109-118.
  345. G. Han and H. Li, Unsolvable block transitive automorphiam groups of 2 -(v, k, 1) designs, J. Comb. Theory, Series A, 114(2007), 77-96.
  346. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedicata, 2(1974), 425-460.
  347. D.G. Higman and J.E. McLaughlin, Geometric ABA-groups, Illinois J. Math., 5(1969), 74-84.
  348. D.R. Hughes and F.C. Piper, Design Theory Cambridge University Press, 1985.
  349. W.M. Kantor, Primitive permutation groups of odd degree and an application to finite projective planes, J. Algebra, 106(1987), 15-45.
  350. W.M. Kantor, Homogeneous designs and geometric lattices, J. Comb. Theory, Series A, 38(1985), 66-74.
  351. P. Kleidman, The classification of finite linear spaces with flag-transitive automorphism groups of affine type, J. Comb. theory, Series A, 84(1998), 196-235.
  352. H. Li, On block-transitive 2 -(v, 4, 1) designs, J. Comb. Theory, Series A, 69(1995), 115-124.
  353. H. Li and Y. Liu, Automorphism groups of linear spaces and parabolic subgroups, I, II, Submitted to J. Comb. Theory, A.
  354. H. Li and and W. Liu, Solvable block transitive automorphism groups of 2 -(v, k, 1) designs, J. Comb. Theory, Series A, 93(2001), 182-191.
  355. H. Li and and W. Liu, Line-primitive 2 -(v, k, 1) designs with k (k,v) ≤ 10, J. Comb. Theory, Series A, 93(2001), 153-167.
  356. Martin W. Liebeck, On the orders of maximal subroups of the finite classical groups, Proc. London Math. Soc., 50(1985), 426-446.
  357. W. Liu, Simple groups of Lie type 3 D 4 (q) and 2 -(v, k, 1) designs, Science in China (New Series), 32(2003), 526-536.
  358. W. Liu, Finite linear spaces admitting a projective group PSU (3, q) with q even, Linear Alg. and its Appl., 374(2003), 291-309.
  359. W. Liu, Steinberg triality groups acting on 2 -(v, k, 1) designs, Science in China (Series A), 46(2003), 872-883.
  360. W. Liu, Finite linear spaces admitting a two dimensional projective linear space, J. Comb.Theory, Series A. 103(2003), 209-222.
  361. W. Liu, Solvable block transitive automorphism groups of 2 -(v, 6, 1) designs, Acta Math. Sinica, 43(2000), 157-162.
  362. W. Liu, Solvable block transitive automorphism groups of 2 -(v, 7, 1) designs, Advances in Math. (China), 30(2001), 55-62.
  363. W. Liu, The Chevalley groups G 2 (q) with q odd and 2 -(v, k, 1) designs, Europ. J. Comb., 24(2003), 331-346.
  364. W. Liu, The Chevalley groups G 2 (2 n ) and 2 -(v, k, 1) designs, Algebra Coll., 8(2001), 471-480.
  365. W. Liu and H. Li, A generalization of the Camina-Gagen theorem (in Chinese) II, Adv. of Math. (Beijing), 25(1996), 438-444.
  366. W. Liu and H. Li, Solvable block-transitive automorphism groups of finite 2 -(v, k, 1) designs, J. Comb. Theory, Series A, 44(2001), 182-191.
  367. W. Liu, H. Li and C. Ma, Suzuki Groups and 2 -(v, k, 1) designs, Europ. J. Combinatorics, 22(2001), 513-519.
  368. W. Liu, S. Li and L. Gong, Almost simple groups with socle Re(q) acting on finite linear spaces, Europ. J. Comb., 27(2006), 788-800.
  369. W. Liu and J. Li, Finite projective planes admitting a projective linear group PSL(2, q), Linear Algebra and Its Appl., 413(2006), 121-130.
  370. W. Liu, S. Dai and L. Gong, Almost simple groups with socle 3 D 4 (q) acting on finite linear spaces Science in China 49(2006), 1768-1776.
  371. W. Liu, H. Li and S. Zhou, Suzuki groups and 2 -(v, k, 1) designs, Europ. J. Comb., 22(2001), 513-519.
  372. C. Praeger and S. Zhou, Classification of line transitive point imprimitive linear spaces with line size at most 12, To appear in Codes and Chryptography.
  373. J. Saxl, On finite linear spaces with almost simple flag transitive automorphism groups, J. of Comb. Theory, Series A, 100(2002), 302-343.
  374. H. Wielandt, Finite Permutation Groups, Acadmic Press, New York, 1964.
  375. W. Tong and H. Li, Solvable block transitive automorphism groups of 2 -(v, 5, 1) designs, Discrete Math., 260(2003), 267-273.
  376. S. Zhou, Block primitive 2 -(v, k, 1) designs admitting a Ree group of characteristic two, Designs, Codes and Crypt., 36(2005), 159-169.
  377. S. Zhou and H. Li, The Ree Groups 2 F 4 (q) and 2 -(v, k, 1) designs, Ann, Math., 23A(2002), 713-722.
  378. S. Zhou , Ree groups 2 G 2 (q) and 2 -(v, k, 1) block designs (II), Acta Math. Sinica, 46(2003), 824-928. REFERENCES
  379. M. Abas, Homomorphisms of triangle groups with large injectivity radius, Acta Math. Univ. Comenianae 72 (2003) 2, 253-259.
  380. K. S. Brown, ''Buildings,'' Springer, 1989.
  381. J. Humphreys, ''Reflection groups and Coxeter groups,'' Cambridge U. Press, 1990.
  382. M. Ipolyiová, Algebraic constructions of regular maps, PhD Dissertation, 2004.
  383. G. A. Jones, Triangular maps and non-congruence subgroups of the modular group, Bull. London Math. Soc. 11 (1979), 117-123.
  384. G. A. Jones and M. Jones, ''Elementary Number Theory'', Springer, 1998.
  385. G. A. Jones and D. Singerman, Belyǐ functions, hypermaps, and Galois groups, Bull. London Math. Soc. 28 (1996), 561-590.
  386. M. Mačaj, J. Širáň and M. Ipolyiová, Injectivity radius of representations of triangle groups and planar width of regular hypermaps, submitted for publication.
  387. A. Mal'cev, On the faithful representation of infinite groups by matrices, Russian: Mat. Sbornik 8 (50) (1940) 405-422; English: AMS Transl. (2) 45 (1965), 1-18.
  388. J. Mennicke, Eine Bemerkung über Fuchssche Gruppen, Inv. Math. 2 (1967), 301-305.
  389. J. F. Moran, The growth rate and balance of homogeneous tilings in the hyperbolic plane, Discrete Math. 133 (1997) 1-3, 151-186.
  390. R. Nedela, Regular maps-combinatorial objects relating different fields of mathematics, J. Korean Math. Soc. 38 (2001) 5, 1069-1105.
  391. R. Nedela and M. Škoviera, Regular maps on surfaces with large planar width, European J. Combin. 22 (2001) 2, 243-262.
  392. Ch. Sah, Groups related to compact Riemann surfaces. Acta Math. 123 (1969), 13-42.
  393. J. Širáň, Regular maps on a given surface: a survey. Topics in discrete mathematics, 591-609, Springer, Berlin, 2006.
  394. J. Širáň, Triangle group representations and constructions of regular maps, Proc. London Math. Soc. (3) 82 (2001), 513-532.
  395. J. Tits, Groupes et géométries do Coxeter, unpublished manuscript, 1961.
  396. R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295.
  397. exp(A), the exponent of A 5. #sub(A), the number of subgroups of A 6. #r(A), the number of elements of order r 7. com(A), the order of the commutator of A
  398. #compair(A), the number of ordered pairs of commuting elements
  399. #norpair(A), the number of element-subgroup pairs (a, B) such that aBa -1 = B 10. isomdim(A), the least n such that A is isomorphic to an isometry group of euclidean space E n , alternatively the smallest n such that A has a faithful representation in GL(n) (see [2])
  400. perm(A), the smallest n such that A has a faithful permutation representation on n symbols 12. Given any group property P inherited by subgroups (e.g abelian, solvable), the 0 -1 sizing defined by P(A) = 0 if A has property P and P(A) = 1 otherwise. Most of these are sizings by definition. The parameters γ , γ , and β are sizings because of Babai's theorem [3] that given a subgroup B of the group A, any Cayley graph for A edge-contracts to a Cayley graph for B (and then use that edge-contraction cannot increase genus or Betti number). There are also many natural parameters which are not sizings:
  401. rank(A), the smallest size of a generating set for A 2. abel(A), the order of the abelianization A/A
  402. series(A), length of a composition series for A 4. transperm(A), the smallest n such that A acts faithfully and transitively on n symbols 5. pres(A), the length of the shortest presentation for A, measured by number of keystrokes in some standardized format The simple observation that every group is a subgroup of the symmetric group S n for some n explains why the first four parameters are not sizings (for the fourth, note that if A is abelian, transperm(A) = ord(a)). For pres(A), consider presentations such as A = X , Y : X 2 = Y 1000 = [Y, XYX ] = 1 with B = Y, XYX . The sum of the lengths of the relators for A are 2 + 1000 + 8. Letting U = Y , V = XYX , we get B = U , V : U 1000 = V 1000 = [U , V ] = 1 so the sum of the lengths for B is 1000 + 1000 + 4, and it is not hard to show there can be no shorter presentation for B ∼ = Z 1000 × Z 1000 .
  403. GAPS AND POLES A long standing problem for genus parameters is whether for every g there is a group of genus g. Call n a gap for the sizing s if there is no group A with s(A) = n, that is n is not in the range of s. At the other extreme, call n a pole for s if there are infinitely many groups A with s(A) = n. For the genus parameters, it is known that 0 and 1 are the only poles for γ , σ , σ o , because the Riemann-Hurwitz equation, and its generalization to embeddings of Cayley graphs [5], implies ord(A) is bounded above by 164(γ (A)-1), 84(σ o (A)-1) and 168(σ (A)-1). May and Zimmerman [7] have shown that σ o has no gaps, but it is not known whether there are any gaps for γ or σ . Conder and Tucker [4] have shown that the only possible gaps for σ occur when g ≡ 8, 14 mod(18) and there is a prime p dividing g -1 such that p ≡ 5 mod (6) and the exponent of p in the factorization of g -1 is odd. We give two more elementary examples of gaps and poles.
  404. Theorem 2.1. For the sizing #2(A), the number of involutions in A, all even positive numbers are gaps and all odd numbers, together with 0, are poles.
  405. Proof. Clearly all odd order groups have no involutions, so 0 is a pole. If A has even order, by pairing an element with its inverse, we see that the number of nonidentity, noninvolutoary elements must be even, so the number of involutions must be odd. For every odd n > 1, the dihedral group D n has n involutions and if m is odd, then #2(A × Z m ) = #2(A), so all odd numbers n > 1 are poles. The groups Z 2m for m odd all have exactly one involution, so 1 is also a pole. P REFERENCES
  406. M.O. Alberston and J.P. Hutchinson, On the independence ratio of a graph, J. Graph Theory 2(1978), 1-8.
  407. M.O. Albertson and D. Boutin, Realizing finite groups in Euclidean space, Journal of Algebra 225(2000), 947-956.
  408. L. Babai, Some applications of graph contractions, J. Graph Theory 1(1977), 25-30.
  409. M.D.E. Conder and T.W. Tucker, unpublished.
  410. J.L. Gross and T.W. Tucker, Topological Graph Theory, Wiley-Interscience, New York 1987 (Dover paperback 2001).
  411. Topics in Topological Graph Theory, edited by J.L. Gross and T.W. Tucker, series editors R. Wilson and L Beinecke, Cambridge University Press, to appear.
  412. C.L. May and J. Zimmerman, There is a group of every strong symmetric genus, Bull. Lon. Math. Soc. 35(4) (2003), 433-439.
  413. G.J. Sherman, T.J. Tucker, M.E. Walker, How hamiltonian can a group be?, Arch. Math. (Basel) 57(1991), 1-5.
  414. C.T.C. Wall, On groups consisting mostly of involutions, Proc. Camb. Phil. Soc. 67(1970), 251-262.
  415. T.W. Tucker, Groups acting on surfaces and the genus of a group, J. Comb. Th., Series B 34 (1983), 82-98.
  416. T.W. Tucker, Symmetric embeddings of Cayley graphs in nonorientable surfaces, in Graph Theory, Combinatorics and Applications: Proceedings on the Sixth International Conference on the Theory and Applications of Graphs, edited by Alavi, Chartrand, Oellerman, Schwenk, Wiley-Interscience, New York 1991, pp. 1105-1120.
  417. Belyi G.V. On Galois extensions of a maximal cyclotomic field.-Mathematics USSR Izvestija, vol. 14 (1980), no. 2, 247-256. (Original in Russian: Izvestiya Akademii Nauk SSSR, vol. 14 (1979), no. 2, 269-276.)
  418. Birch B.J., Chowla S., Hall M., Jr., Schinzel A. On the difference x 3 -y 2 .-Norske Vid. Selsk. Forh. (Trondheim), 1965, vol. 38, 65-69.
  419. Conder M. The symmetric genus of the Mathieu groups.-Bull. of the London Math. Soc., 1991, vol. 23, no. 5, 445-453.
  420. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. (With computational assistance from J.G. Thackray.) Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups.-Clarendon Press, Oxford, 1985, xxxiv+252 pp. (Reprinted in 2005 with corrections.)
  421. Cori R. Un code pour les graphes planaires et ses applications.-Astérisque, vol. 27, 1975.
  422. Davenport H. On f 3 (t) -g 2 (t).-Norske Vid. Selsk. Forh. (Trondheim), 1965, vol. 38, 86-87.
  423. Grothendieck A. Esquisse d'un programme (1984).-In: L. Schneps, P. Lochak, eds. ''Geometric Galois Action. Vol. 1: Around Grothendieck's Esquisse d'un Programme'', London Math. Soc. Lecture Notes Series, vol. 242, Cambridge Univ. Press, 1997, 5-48. (English translation: ''Scketch of a programme'', the same volume, p. 243-284.)
  424. Klein F. Vorlesungen über das Ikosaeder und die Aflösung der Gleichungen vom fünften Grade.-Leipzig, 1884. Reprinted by Dover Publ.: Klein F. The Icosahedron and the Solution of Equations of the Fifth Degree, 1956.
  425. Lando S.K., Zvonkin A.K. Graphs on Surfaces and Their Applications.-Springer-Verlag, 2004.
  426. Magot N., Zvonkin A. Belyi functions for Archimedean solids.-Discrete Math., 2000, vol. 217, 249-271.
  427. Pilgrim K.M. Combinations of Complex Dynamical Systems.-Springer-Verlag, 2003 (Lecture Notes in Math., vol. 1827).
  428. Ringel G., Youngs J.W.T. Das Geschlecht des symmetrischen vollständingen dreifärbbaren Graphen.- Comm. Math. Helv., 1970, vol. 45, 152-158.
  429. Ritt J.F. Prime and composite polynomials.-Trans. Amer. Math. Soc., 1922, vol. 23, no. 1, 51-66. (Errata: 1922, vol. 23, no. 4, p. 431.)
  430. Ritt J.F. Permutable rational functions.-Trans. Amer. Math. Soc., 1923, vol. 25, no. 3, 399-448. (Errata: 1924, vol. 26, no. 4, p. 494.)
  431. Stothers W.W. Polynomial identities and Hauptmoduln.-Quart. J. Math. Oxford, ser. 2, 1981, vol. 32, no. 127, 349-370.
  432. Sullivan D. Quasiconformal homeomorphisms and dynamics. I: Solution of the Fatou-Julia problem on wandering domains.-Ann. Math., 1985, vol. 122, 401-418.
  433. White A.T. The genus of the complete tripartite graph K mn,n,n .-J. Combinat. Theory, 1969, vol. 7, 283-285.
  434. Zannier U. On Davenport's bound for the degree of f 3 -g 2 and Riemann's Existence Theorem.-Acta Arithmetica, 1995, vol. 71, no. 2, 107-137.
  435. Conder, M. 1
  436. Feng, Y.-Q. 13
  437. Guidici, M. 27
  438. Ipolyiová, M. 147
  439. Jones, G.A. 43
  440. Kim, G. 59
  441. Kwak, J.H. 71
  442. Lando, S.K. 109
  443. Li, H. 133
  444. Lu, Z.-P. 13
  445. Mačaj, M. 147
  446. Mednykh, A. 71
  447. Praeger, C.E. 27
  448. Širáň, J. 147
  449. Tang, C.Y. 59
  450. Tucker, T.W. 155
  451. Xu, M.-Y. 13
  452. Zvonkin, A.K. 161