Smart Doll: Emotion Recognition Using Embedded Deep Learning
Symmetry
https://doi.org/10.3390/SYM10090387Abstract
Computer vision and deep learning are clearly demonstrating a capability to create engaging cognitive applications and services. However, these applications have been mostly confined to powerful Graphic Processing Units (GPUs) or the cloud due to their demanding computational requirements. Cloud processing has obvious bandwidth, energy consumption and privacy issues. The Eyes of Things (EoT) is a powerful and versatile embedded computer vision platform which allows the user to develop artificial vision and deep learning applications that analyse images locally. In this article, we use the deep learning capabilities of an EoT device for a real-life facial informatics application: a doll capable of recognizing emotions, using deep learning techniques, and acting accordingly. The main impact and significance of the presented application is in showing that a toy can now do advanced processing locally, without the need of further computation in the cloud, thus reducing latency and removi...
References (24)
- Espinosa-Aranda, J.L.; Vallez, N.; Sanchez-Bueno, C.; Aguado-Araujo, D.; Bueno, G.; Deniz, O. Pulga, a tiny open-source MQTT broker for flexible and secure IoT deployments. In Proceedings of the 1st Workshop on Security and Privacy in the Cloud (SPC 2015), Florence, Italy, 30 September 2015; pp. 690-694.
- Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. Pervasive Comput. IEEE 2009, 8, 14-23. [CrossRef]
- Sutaria, R.; Govindachari, R. Making sense of interoperability: Protocols and Standardization initiatives in IoT. In Proceedings of the 2nd International Workshop on Computing and Networking for Internet of Things, Mumbai, India, 8-9 November 2013.
- Deniz, O.; Vallez, N.; Espinosa-Aranda, J.L.; Rico-Saavedra, J.M.; Parra-Patino, J.; Bueno, G.; Moloney, D.; Dehghani, A.; Dunne, A.; Pagani, A.; et al. Eyes of Things. Sensors 2017, 17, 1173. [CrossRef] [PubMed]
- Intel R Movidius TM Myriad TM VPU 2: A Class-Defining Processor. Available online: https://www. movidius.com/myriad2 (accessed on 7 September 2018).
- Barry, B.; Brick, C.; Connor, F.; Donohoe, D.; Moloney, D.; Richmond, R.; O'Riordan, M.; Toma, V. Always-on Vision Processing Unit for Mobile Applications. IEEE Micro 2015, 35, 56-66. [CrossRef]
- Moloney, D.; Suarez, O. A Vision for the Future [Soapbox]. Consum. Electron. Mag. IEEE 2015, 4, 40-45, doi:10.1109/MCE.2015.2392956. [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, G.; Jin, J.; Wang, B.; Wang, X.; Cichocki, A. Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 2018, 96, 302-310. [CrossRef]
- Jiao, Y.; Zhang, Y.; Wang, Y.; Wang, B.; Jin, J.; Wang, X. A novel multilayer correlation maximization model for improving CCA-based frequency recognition in SSVEP brain-computer interface. Int. J. Neural Syst. 2018, 28, 1750039. [CrossRef] [PubMed]
- Zhang, Y.; Zhou, G.; Jin, J.; Zhao, Q.; Wang, X.; Cichocki, A. Sparse Bayesian classification of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2256-2267. [CrossRef] [PubMed]
- Liu, N.; Wan, L.; Zhang, Y.; Zhou, T.; Huo, H.; Fang, T. Exploiting Convolutional Neural Networks with Deeply Local Description for Remote Sensing Image Classification. IEEE Access 2018, 6, 11215-11228. [CrossRef]
- Wang, R.; Zhang, Y.; Zhang, L. An adaptive neural network approach for operator functional state prediction using psychophysiological data. Integr. Comput. Aided Eng. 2016, 23, 81-97. [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117, doi:10.1016/j.neunet.2014.09.003. [CrossRef] [PubMed]
- Tiny-Dnn. Avilable online: https://github.com/tiny-dnn/tiny-dnn (accessed on 7 September 2018).
- Intel R Movidius TM Neural Compute Stick. Avilable online: https://developer.movidius.com/ (accessed on 7 September 2018).
- Ekman, P.; Freisen, W.V.; Ancoli, S. Facial signs of emotional experience. J. Pers. Soc. Psychol. 1980, 39, 1125. [CrossRef]
- Ekman, P. An argument for basic emotions. Cognit. Emot. 1992, 6, 169-200. [CrossRef]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 13-18 June 2010; pp. 94-101.
- Ekman, P.; Rosenberg, E.L. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS);
- Hjortsjö, C.H. Man's Face and Mimic Language; Studentlitteratur: Lund, Sweden, 1969.
- Goren, D.; Wilson, H.R. Quantifying facial expression recognition across viewing conditions. Vis. Res. 2006, 46, 1253-1262. [CrossRef] [PubMed]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8-14 December 2001; Volume 1, pp. I-511-I-518, doi:10.1109/CVPR.2001.990517.
- Abramson, Y.; Steux, B.; Ghorayeb, H. Yet even faster (YEF) real-time object detection. Int. J. Intell. Syst. Technol. Appl. 2007, 2, 102-112. [CrossRef]
- EoT Project. Avilable online: http://eyesofthings.eu (accessed on 7 September 2018).