Abstract
An automatic “museum audio guide” is presented as a new type of audio guide for museums. The device consists of a headset equipped with a camera that captures exhibit pictures and the eyes of things computer vision device (EoT). The EoT board is capable of recognizing artworks using features from accelerated segment test (FAST) keypoints and a random forest classifier, and is able to be used for an entire day without the need to recharge the batteries. In addition, an application logic has been implemented, which allows for a special highly-efficient behavior upon recognition of the painting. Two different use case scenarios have been implemented. The main testing was performed with a piloting phase in a real world museum. Results show that the system keeps its promises regarding its main benefit, which is simplicity of use and the user’s preference of the proposed system over traditional audioguides.
References (66)
- Hu, F. Classification and Regression Trees, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013, doi:10.1201/b15552.
- Commission, E. Report from the Workshop on Cyber-Physical Systems: Uplifting Europe's Innovation Capacity. 2013. Available online: https://ec.europa.eu/digital-single-market/en/news/report-workshop- cyber-physical-systems-uplifting-europe's-innovation-capacity (accessed on 31 January 2020).
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: London, UK, 2010.
- Belbachir, A.N. Smart Cameras; Springer: London, UK, 2010.
- BDTI. Implementing Vision Capabilities in Embedded Systems. Available online: https://www.bdti.com/ MyBDTI/pubs/BDTI_ESC_Boston_Embedded_Vision.pdf (accessed on 31 January 2020).
- Kisačanin, B.; Bhattacharyya, S.S.; Chai, S. Embedded Computer Vision; Springer International Publishing: Cham, Switzerland, 2009.
- Bailey, D. Design for Embedded Image Processing on FPGAs; John Wiley & Sons Asia Pte Ltd.: Singapore, 2011.
- Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. A survey on wireless multimedia sensor networks. Comput. Netw. 2007, 51, 921-960. [CrossRef]
- Farooq, M.O.; Kunz, T. Wireless multimedia sensor networks testbeds and state-of-the-art hardware: A survey. In Communication and Networking, Proceedings of the International Conference on Future Generation Communication and Networking, Jeju Island, Korea, 8-10 December 2011; Springer: Berlin, Heidelberg, Germany, 2011, pp. 1-14.
- Almalkawi, I.T.; Guerrero Zapata, M.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless multimedia sensor networks: Current trends and future directions. Sensors 2010, 10, 6662-6717. [CrossRef] [PubMed]
- Soro, S.; Heinzelman, W. A Survey of Visual Sensor Networks. Available online: https://www.hindawi. com/journals/am/2009/640386/ (accessed on 30 January 2020).
- Fernández-Berni, J.; Carmona-Galán, R.; Rodríguez-Vázquez, Á. Vision-enabled WSN nodes: State of the art. In Low-Power Smart Imagers for Vision-Enabled Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 5-20.
- Tavli, B.; Bicakci, K.; Zilan, R.; Barcelo-Ordinas, J.M. A survey of visual sensor network platforms. Multimedia Tools Appl. 2012, 60, 689-726. [CrossRef]
- Chen, P.; Ahammad, P.; Boyer, C.; Huang, S.I.; Lin, L.; Lobaton, E.; Meingast, M.; Oh, S.; Wang, S.; Yan, P.; et al. CITRIC: A low-bandwidth wireless camera network platform. In Proceedings of the 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras, Stanford, CA, USA, 7-11 September 2008; pp. 1-10.
- Hengstler, S.; Prashanth, D.; Fong, S.; Aghajan, H. MeshEye: A hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks, Cambridge, MA, USA, 25-27 April 2007; pp. 360-369.
- Kerhet, A.; Magno, M.; Leonardi, F.; Boni, A.; Benini, L. A low-power wireless video sensor node for distributed object detection. J. Real-Time Image Process. 2007, 2, 331-342. [CrossRef]
- Kleihorst, R.; Abbo, A.; Schueler, B.; Danilin, A. Camera mote with a high-performance parallel processor for real-time frame-based video processing. In Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, London, UK, 5-7 September 2007; pp. 69-74.
- Feng, W.C.; Code, B.; Kaiser, E.; Shea, M.; Feng, W.; Bavoil, L. Panoptes: A scalable architecture for video sensor networking applications. ACM Multimedia 2003, 1, 151-167.
- Boice, J.; Lu, X.; Margi, C.; Stanek, G.; Zhang, G.; Manduchi, R.; Obraczka, K. Meerkats: A Power-Aware, Self-Managing Wireless Camera Network For Wide Area Monitoring. Available online: http://users.soe. ucsc.edu/~manduchi/papers/meerkats-dsc06-final.pdf (accessed on 30 January 2020).
- Murovec, B.; Perš, J.; Kenk, V.S.; Kovačič, S. Towards commoditized smart-camera design. J. Syst. Archit. 2013, 59, 847-858. [CrossRef]
- Qualcomm, Snapdragon. Available online: http://www.qualcomm.com/snapdragon (accessed on 30 January 2020).
- Deniz, O. EoT Project. Available online: http://eyesofthings.eu (accessed on 30 January 2020).
- Deniz, O.; Vallez, N.; Espinosa-Aranda, J.L.; Rico-Saavedra, J.M.; Parra-Patino, J.; Bueno, G.; Moloney, D.; Dehghani, A.; Dunne, A.; Pagani, A.; et al. Eyes of Things. Sensors 2017, 17, 1173. doi:10.3390/s17051173. [CrossRef] [PubMed]
- Wacker, P.; Kreutz, K.; Heller, F.; Borchers, J.O. Maps and Location: Acceptance of Modern Interaction Techniques for Audio Guides. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7-12 May 2016; pp. 1067-1071.
- Kenteris, M.; Gavalas, D.; Economou, D. Electronic mobile guides: A survey. Pers. Ubiquitous Comput. 2011, 15, 97-111. [CrossRef]
- Abowd, G.D.; Atkeson, C.G.; Hong, J.; Long, S.; Kooper, R.; Pinkerton, M. Cyberguide: A mobile context-aware tour guide. Wireless Netw. 1997, 3, 421-433. [CrossRef]
- Kim, D.; Seo, D.; Yoo, B.; Ko, H. Development and Evaluation of Mobile Tour Guide Using Wearable and Hand-Held Devices. In Proceedings of the International Conference on Human-Computer Interaction, Toronto, ON, Canada, 17-22 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 285-296.
- Sikora, M.; Russo, M.; Ðerek, J.; Jurčević, A. Soundscape of an Archaeological Site Recreated with Audio Augmented Reality. ACM Trans. Multimedia Comput. Commu. Appl. 2018, 14, 74. [CrossRef]
- Lee, G.A.; Dünser, A.; Kim, S.; Billinghurst, M. CityViewAR: A mobile outdoor AR application for city visualization. In Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality-Arts, Media, and Humanities (ISMAR-AMH), Altanta, GA, USA, 5-8 November 2012; pp. 57-64.
- DüNser, A.; Billinghurst, M.; Wen, J.; Lehtinen, V.; Nurminen, A. Exploring the use of handheld AR for outdoor navigation. Comput. Graphics 2012, 36, 1084-1095. [CrossRef]
- Baldauf, M.; Fröhlich, P.; Hutter, S. KIBITZER: A wearable system for eye-gaze-based mobile urban exploration. In Proceedings of the 1st Augmented Human International Conference, Megève, France, 2-3 April 2010; pp. 1-5.
- Szymczak, D.; Rassmus-Gröhn, K.; Magnusson, C.; Hedvall, P.O. A real-world study of an audio-tactile tourist guide. In Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and Services, San Francsico, CA, USA, 21-24 September 2012, pp. 335-344.
- Lim, J.H.; Li, Y.; You, Y.; Chevallet, J.P. Scene Recognition with Camera Phones for Tourist Information Access. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2-5 July 2007; pp. 100-103.
- Skoryukina, N.; Nikolaev, D.P.; Arlazarov, V.V. 2D art recognition in uncontrolled conditions using one-shot learning. In Proceedings of the International Conference on Machine Vision, Amsterdam, The Netherlands, 1 October 2019; p. 110412E.
- Fasel, B.; Gool, L.V. Interactive Museum Guide: Accurate Retrieval of Object Descriptions. In Adaptive Multimedia Retrieval; Springer: Berlin/Heidelberg, Germany, 2006; pp. 179-191.
- Temmermans, F.; Jansen, B.; Deklerck, R.; Schelkens, P.; Cornelis, J. The mobile Museum guide: Artwork recognition with eigenpaintings and SURF. In Proceedings of the 12th International Workshop on Image Analysis for Multimedia Interactive Services, Delft, The Netherlands, 13-15 April 2011.
- Greci, L. An Augmented Reality Guide for Religious Museum. In Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, Lecce, Italy, 15-18 June 2016; Springer: Berlin/Heidelberg, Germany, 2016, pp. 280-289.
- Raptis, G.E.; Katsini, C.P.; Chrysikos, T. CHISTA: Cultural Heritage Information Storage and reTrieval Application. In Proceedings of the 6th EuroMed Conference, Nicosia, Cyprus, 29 October-3 November 2018; pp. 163-170.
- Ali, S.; Koleva, B.; Bedwell, B.; Benford, S. Deepening Visitor Engagement with Museum Exhibits through Hand-crafted Visual Markers. In Proceedings of the 2018 Designing Interactive Systems Conference (DIS '18), Hong Kong, China, 9-13 June 2018; pp. 523-534.
- Ng, K.H.; Huang, H.; O'Malley, C. Treasure codes: Augmenting learning from physical museum exhibits through treasure hunting. Pers. Ubiquitous Comput. 2018, 22, 739-750. [CrossRef]
- Wein, L. Visual recognition in museum guide apps: Do visitors want it? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April 2014; pp. 635-638.
- Ruf, B.; Kokiopoulou, E.; Detyniecki, M. Mobile Museum Guide Based on Fast SIFT Recognition. Adaptive Multimedia Retrieval. Identifying, Summarizing, and Recommending Image and Music; Detyniecki, M., Leiner, U., Nürnberger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 170-183.
- Serubugo, S.; Skantarova, D.; Nielsen, L.; Kraus, M. Comparison of Wearable Optical See-through and Handheld Devices as Platform for an Augmented Reality Museum Guide. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications; SCITEPRESS Digital Library: Berlin, Germany, 2017; pp. 179-186. doi:10.5220/0006093901790186. [CrossRef]
- Altwaijry, H.; Moghimi, M.; Belongie, S. Recognizing locations with google glass: A case study. In Proceedings of the IEEE winter conference on applications of computer vision, Steamboat Springs, CO, USA, 24-26 March 2014; pp. 167-174.
- Yanai, K.; Tanno, R.; Okamoto, K. Efficient mobile implementation of a cnn-based object recognition system. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, October 2016; pp. 362-366.
- Seidenari, L.; Baecchi, C.; Uricchio, T.; Ferracani, A.; Bertini, M.; Bimbo, A.D. Deep artwork detection and retrieval for automatic context-aware audio guides. ACM Trans. Multimedia Comput. Commun. Appl. 2017, 13, 35. [CrossRef]
- Seidenari, L.; Baecchi, C.; Uricchio, T.; Ferracani, A.; Bertini, M.; Del Bimbo, A. Wearable systems for improving tourist experience. In Multimodal Behavior Analysis in the Wild; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171-197.
- Crystalsound Audio Guide. Available online: https://crystal-sound.com/en/audio-guide (accessed on 30 January 2020).
- Locatify. Available online: https://locatify.com/ (accessed on 30 January 2020).
- Copernicus Guide. Available online: http://www.copernicus-guide.com/en/index-museum.html (accessed on 30 January 2020).
- xamoom Museum Guide. Available online: https://xamoom.com/museum/ (accessed on 30 January 2020).
- Orpheo Touch. Available online: https://orpheogroup.com/us/products/visioguide/orpheo-touch (accessed on 30 January 2020).
- Headphone Weight. Available online: https://www.headphonezone.in/pages/headphone-weight (accessed on 30 January 2020).
- OASIS Standards-MQTT v3.1.1. Available online: https://www.oasis-open.org/standards (accessed on 30 January 2020).
- Espinosa-Aranda, J.L.; Vállez, N.; Sanchez-Bueno, C.; Aguado-Araujo, D.; García, G.B.; Déniz-Suárez, O. Pulga, a tiny open-source MQTT broker for flexible and secure IoT deployments. In Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28-30 September 2015, pp. 690-694.
- Monteiro, D.M.; Rodrigues, J.J.P.C.; Lloret, J. A secure NFC application for credit transfer among mobile phones. In Proceedings of the 2012 International Conference on Computer, Information and Telecommunication Systems (CITS), Amman, Jordan, 13 May 2012; pp. 1-5. doi:10.1109/CITS.2012.6220369. [CrossRef]
- Lepetit, V.; Pilet, J.; Fua, P. Point matching as a classification problem for fast and robust object pose estimation. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June-2 July 2004; Volume 2, pp. II-244-II-250. doi:10.1109/CVPR.2004.1315170.
- Espinosa-Aranda, J.; Vallez, N.; Rico-Saavedra, J.; Parra-Patino, J.; Bueno, G.; Sorci, M.; Moloney, D.; Pena, D.; Deniz, O. Smart Doll: Emotion Recognition Using Embedded Deep Learning. Symmetry 2018, 10, 387. doi:10.3390/sym10090387. [CrossRef]
- Sanderson, C.; Paliwal, K.K. Fast features for face authentication under illumination direction changes. Pattern Recognit. Lett. 2003, 24, 2409-2419. doi:10.1016/S0167-8655(03)00070-9. [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 105-119. [CrossRef] [PubMed]
- Tareen, S.A.K.; Saleem, Z. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30 November 2018; pp. 1-10.
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958. doi:10.1021/ci034160g. [CrossRef] [PubMed]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth and Brooks: Monterey, CA, USA, 1984.
- Bosch, A.; Zisserman, A.; Munoz, X. Image classification using random forests and ferns. In Proceedings of the 2007 IEEE 11th international conference on computer vision, Rio de Janeiro, Brazil, 14-20 October 2007; pp. 1-8.
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381-395. doi:10.1145/358669.358692. [CrossRef]
- Nvidia Developer Blogs: NVIDIA R Jetson TM TX1 Supercomputer-on-Module Drives Next Wave of Autonomous Machines. Available online: https://devblogs.nvidia.com/ (accessed on 30 January 2020).