Academia.eduAcademia.edu

Outline

Recent Advances in Data Logging for Intertidal Ecology

Frontiers in Ecology and Evolution

https://doi.org/10.3389/FEVO.2018.00213

Abstract

Temperature is among the most ubiquitous determinants of organism growth, survival, and reproduction. Accurate recordings and predictions of how the temperatures of plants and animals vary in time and space are therefore critical to forecasting the likely impacts of global climate change. Intertidal zones have long served as a model ecosystem for examining the role of environmental stress on patterns of species distributions, and are emerging as models for understanding the ecological impacts of climate change. Intertidal environments are among the most physically demanding habitats on the planet, and excursions in body temperature of ectotherms can exceed 25 • C over the course of a few hours. It is now well-known that the body temperatures of intertidal organisms can deviate significantly from the temperature of the surrounding air and substrate due to the influence of solar radiation, and that their size, color, morphology, and material properties markedly influence their temperatures. While many intertidal organisms are slow moving or almost entirely sessile, for others, behavior can play a significant role in driving vulnerability to temperature extremes. We explore datalogging methods used in intertidal zones and discuss the advantages and drawbacks of each. We show how measurements made in situ reveal patterns of thermal stress that otherwise would be undetectable using more remotely-sensed data. Additionally, we explore the idea that the relevant "grain size" of the physical environment, and thus the spatial scale that must be measured, is a function of (1) the size of the organism relative to local refugia; (2) an organism's ability to sense and to some degree predict near-term environmental conditions; and (3) an animal's movement speed and directionality toward refugia. Similarly, relevant temporal scales depend on the size, behavior, and physiological response of the organism. While miniaturization of dataloggers has significantly improved, several significant limitations still exist, many of which relate to difficulties in recording behavioral responses to changing environmental conditions. We discuss recent innovations in monitoring and modeling intertidal temperatures, and the important role that they have played in bridging ecological and physiological studies of ongoing impacts of climate change.

References (173)

  1. Adolph, S. C. (1990). Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71, 315-327. doi: 10.2307/1940271
  2. Adolph, S. C., and Porter, W. P. (1993). Temperature, activity, and lizard life histories. Am. Nat. 142, 273-295. doi: 10.1086/285538
  3. Allen, H. J., Waller, W. T., Acevedo, M. F., Morgan, E. L., Dickson, K. L., and Kennedy, J. H. (2010). A minimally invasive technique to monitor valve-movement behavior in bivalves. Environ. Technol. 17, 501-507. doi: 10.1080/09593331708616411
  4. Bell, E. C. (1995). Environmental and morphological influences on thallus temperature and desiccation of the intertidal alga Mastocarpus papillatus Kützing. J. Exp. Mar. Biol. Ecol. 191, 29-55.
  5. Bertness, M. D. (1989). Intraspecific competition and facilitation in a northern acorn barnacle population. Ecology 70, 257-268. doi: 10.2307/1938431
  6. Brewin, R. J. W., Smale, D. A., Moore, P. J., Dall'Olmo, G., Miller, P. I., Taylor, B. H., et al. (2018). Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10:925. doi: 10.3390/rs10060925
  7. Broitman, B. R., Szathmary, P. L., Mislan, K. A. S., Blanchette, C. A., and Helmuth, B. (2009). Predator-prey interactions under climate change: the importance of habitat vs body temperature. Oikos 118, 219-224. doi: 10.1111/j.1600-0706.2008.17075.x
  8. Brown, M. T. (1987). Effects of desiccation on photosynthesis of intertidal algae from a Southern New Zealand shore. Bot. Mar. 30, 121-127. doi: 10.1515/botm.1987.30.2.121
  9. Buckley, L. B., Miller, E. F., and Kingsolver, J. G. (2013). Ectotherm thermal stress and specialization across altitude and latitude. Integr. Comp. Biol. 53, 571-581. doi: 10.1093/icb/ict026
  10. Bulanon, M., Burks, T. F., and Alchanatis, V. (2009). Image fusion and thermal images for fruitdetection. Biosyst. Eng. 103, 12-22. doi: 10.1016/j.biosystemseng.2009.02.009
  11. Caillon, R., Suppo, C., Casas, J., Woods, H. A., and Pincebourde, S. (2014). Warming decreases thermal heterogeneity of leaf surfaces: implications for behavioural thermoregulation by arthropods. Funct. Ecol. 28, 1449-1458. doi: 10.1111/1365-2435.12288
  12. Cartwright, S. R., and Williams, G. A. (2012). Seasonal variation in utilization of biogenic microhabitats by littorinid snails on tropical rocky shores. Mar. Biol. 159, 2323-2332. doi: 10.1007/s00227-012-2017-3
  13. Castillo, K. D., and Lima, F. P. (2010). Comparison of in situ and satellite-derived (MODIS-Aqua/Terra) methods for assessing temperatures on coral reefs. Limnol. Oceanogr. Methods 8, 107-117. doi: 10.4319/lom.2010. 8.0107
  14. Chan, B. K. K., Lima, F. P., Williams, G. A., Seabra, R., and Wang, H.-Y. (2016). A simplified biomimetic temperature logger for recording intertidal barnacle body temperatures. Limnol. Oceanogr. Methods 14, 448-455. doi: 10.1002/lom3.10103
  15. Chapperon, C., and Seuront, L. (2011). Space-time variability in environmental thermal properties and snail thermoregulatory behaviour. Funct. Ecol. 25, 1040-1050. doi: 10.1111/j.1365-2435.2011.01859.x
  16. Comeau, L., Mayrand, E., and Mallet, A. (2012). Winter quiescence and spring awakening of the Eastern oyster Crassostrea virginica at its northernmost distribution limit. Mar. Biol. 159, 2269-2279. doi: 10.1007/s00227-012- 2012-8
  17. Connell, J. H. (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42, 710-723.
  18. Davenport, J., and Davenport, J. L. (2005). Effects of shore height, wave exposure and geographical distance on thermal niche with of intertidal fauna. Mar. Ecol. Prog. Ser. 292, 41-50. doi: 10.2307/24868068
  19. Dell, A. I., Pawar, S., and Savage, V. M. (2014). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 84, 70-84. doi: 10.1111/1365-2656.12081
  20. Denny, M. (2017). The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen's inequality. J. Exp. Biol. 220, 139-146. doi: 10.1242/jeb.140368
  21. Denny, M. W. (1985). Wave forces on intertidal organisms: a case study. Limnol. Oceanogr. 30, 1171-1187. doi: 10.4319/lo.1985.30.6.1171
  22. Denny, M. W., Dowd, W. W., Bilir, L., and Mach, K. J. (2011). Spreading the risk: small-scale body temperature variation among intertidal organisms and its implications for species persistence. J. Exp. Mar. Biol. Ecol. 400, 175-190. doi: 10.1016/j.jembe.2011.02.006
  23. Denny, M. W., and Harley, C. D. G. (2006). Hot limpets: predicting body temperature in a conductance-mediated thermal system. J. Exp. Biol. 209, 2409-2419. doi: 10.1242/jeb.02257
  24. Denny, M. W., and Helmuth, B. (2009). Confronting the physiological bottleneck: a challenge from ecomechanics. Integr. Comp. Biol. 49, 197-201. doi: 10.1093/icb/icp070
  25. Díaz, F., Denisse, R. A., Salas, A., Galindo-Sanchez, C. E., Gonzalez, M. A., Sanchez, A., et al. (2015). Behavioral thermoregulation and critical thermal limits of giant keyhole limpet Megathura crenulate (Sowerby 1825) (Mollusca; Vetigastropoda). J. Therm. Biol. 54, 133-138. doi: 10.1016/j.jtherbio.2013.05.007
  26. Diederich, C. M., and Pechenik, J. A. (2013). Thermal tolerance of Crepidula fornicata (Gastropoda) life history stages from intertidal and subtidal subpopulations. Mar. Ecol. Prog. Ser. 486, 173-187. doi: 10.3354/meps10355
  27. Dong, Y.-W., Li, X.-X., Choi, F. M. P., Williams, G. A., Somero, G. N., and Helmuth, B. (2017). Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. R. Soc. B 284:20162367. doi: 10.1098/rspb.2016.2367
  28. Doty, M. S. (1946). Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific coast. Ecology 315-328. doi: 10.2307/1933542
  29. Drake, M. J., Miller, N. A., and Todgham, A. E. (2017). The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis. J. Exp. Biol. 220, 3072-3083. doi: 10.1242/jeb. 159020
  30. Dring, M. J., and Brown, F. A. (1982). Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol. Prog. Ser. 8, 301-308. doi: 10.2307/24815108
  31. Edson, E. C., and Patterson, M. R. (2015). "MantaRay: a novel autonomous sampling instrument for in situ measurements of environmental microplastic particle concentrations, "in OCEANS 2015 -MTS/IEEE Washington. Abstract retrieved from IEEE Xplore (Accession No. 15798895) (Washington, DC).
  32. Ehrlén, J., and Morris, W. F. (2015). Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303-314. doi: 10.1111/ele.12410
  33. Elvin, D. W., and Gonor, J. J. (1979). The thermal regime of an intertidal Mytilus californianus Conrad population on the Central Oregon Coast. J. Exp. Mar. Biol. Ecol. 39, 265-279.
  34. Erasmus, T., and De Villiers, A. F. (1982). Ore dust pollution and body temperatures of intertidal animals. Mar. Pollut. Bull. 13, 30-32.
  35. Etter, R. J. (1988). Physiological stress and color polymorphism in the intertidal snail Nucella lapillus. Evolution 4, 660-680.
  36. Faye, E., Dangles, O., and Pincebourde, S. (2016a). Distance makes the difference in thermography for ecological studies. J. Therm. Biol. 56, 1-9. doi: 10.1016/j.jtherbio.2015.11.011
  37. Faye, E., Rebaudo, F., Cajo, D. Y., Fraunié, S. C., and Dangles, O. (2016b). A toolbox for studying thermal heterogeneity across spatial scales: from unmanned aerial vehicle imagery to landscape metrics. Methods Ecol. Evol. 7, 437-446. doi: 10.1111/2041-210X.12488
  38. Faye, E., Rebaudo, F., Carpio, C., Herrera, M., and Dangles, O. (2017). Does heterogeneity in crop canopy microclimates matter for pests? Evidence from aerial high-resolution thermography. Agric. Ecosyst. Environ. 246, 124-133. doi: 10.1016/j.agee.2017.05.027
  39. Finke, G. R., Bozinovic, F., and Navarrete, S. A. (2009). A mechanistic model to study the thermal ecology of a southeastern Pacific dominant intertidal mussel and implications for climate change. Physiol. Biochem. Zool. 82, 303-313. doi: 10.1086/599321
  40. Finke, G. R., Navarrete, S. A., and Bozinovic, F. (2007). Tidal regimes of temperate coasts and their influences on aerial exposure for intertidal organisms. Mar. Ecol. Prog. Ser. 343, 57-62. doi: 10.3354/meps06918
  41. Fitzhenry, T., Halpin, P. M., and Helmuth, B. (2004). Testing the effects of wave exposure, site, and behavior on intertidal mussel body temperatures: applications and limits of temperature logger design. Mar. Biol. 145, 339-349. doi: 10.1007/s00227-004-1318-6
  42. Fly, E. K., Monaco, C. J., Pincebourde, S., and Tullis, A. (2012). The influence of intertidal location and temperature on the metabolic cost of emersion in Pisaster ochraceus. J. Exp. Mar. Biol. Ecol. 422-423, 20-28. doi: 10.1016/j.jembe.2012.04.007
  43. Gates, D. M. (1980). Biophysical Ecology. New York, NY: Springer-Verlag.
  44. Geller, G. N., Halpin, P. N., Helmuth, B., Hestir, E. L., Skidmore, A., Abrams, M. J., et al. (2017). "Remote Sensing for Biodiversity, " in The GEO Handbook on Biodiversity Observation Networks, eds M. Walters and R. J. Scholes (Cham: Springer), 187-210. doi: 10.1007/978-3-319-27288-7_8
  45. Gilman, S., Hayford, H., Craig, C., and Carrington, E. (2015). Body temperatures of an intertidal barnacle and two whelk predators in relation to shore height, solar aspect, and microhabitat. Mar. Ecol. Prog. Ser. 536, 77-88. doi: 10.3354/meps11418
  46. Gilman, S. E., and Rognstad, R. L. (2018). Influence of food supply and shore height on the survival and growth of the barnacle Balanus glandula (Darwin). J. Exp. Mar. Biol. Ecol. 498, 32-38. doi: 10.1016/j.jembe.2017. 10.006
  47. Gleason, L. U., and Burton, R. S. (2016). Regional patterns of thermal stress and constitutive gene expression in the marine snail Chlorostoma funebralis in northern and southern California. Mar. Ecol. Prog. Ser. 556, 143-159. doi: 10.3354/meps11850
  48. Gleason, L. U., Miller, L. P., Winnikoff, J. R., Somero, G. N., Yancey, P. H., Bratz, D., et al. (2017). Thermal history and gape of individual Mytilus californianus correlate with oxidative damage and thermoprotective osmolytes. J. Exp. Biol. 220, 4292-4304. doi: 10.1242/jeb.168450
  49. Gunderson, A. R., Armstrong, E. J., and Stillman, J. H. (2016). Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357-378. doi: 10.1146/annurev-marine-122414-033953
  50. Hannah, L., Flint, L., Syphard, A. D., Moritz, M. A., Buckley, L. B., and McCullough, I. M. (2014). Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390-397. doi: 10.1016/j.tree.2014.04.006
  51. Hardin, D. D. (1968). A comparative study of lethal temperature in limpets Acmaea digitalis and Acmaea scabra. Veliger 11, 78-83.
  52. Harley, C. D. G. (2008). Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar. Ecol. Prog. Ser. 371, 37-46. doi: 10.3354/meps07711
  53. Harley, C. D. G., and Helmuth, B. S. T. (2003). Local and regional scale effects of wave exposure, thermal stress, and absolute vs. effective shore level on patterns of intertidal zonation. Limnol. Oceanogr. 48, 1498-1508. doi: 10.4319/lo.2003.48.4.1498
  54. Harley, C. D. G., and Lopez, J. P. (2003). The natural history, thermal physiology, and ecological impacts of intertidal mesopredators, Oedoparena spp. (Diptera: Dryomyzidae). Invertebr. Biol. 122, 61-73. doi: 10.1111/j.1744-7410.2003.tb00073.x
  55. Hayford, H. A., Gilman, S. E., and Carrington, E. (2015). Foraging behavior minimizes heat exposure in a complex thermal landscape. Mar. Ecol. Prog. Ser. 518, 165-175. doi: 10.3354/meps11053
  56. Hayford, H. A., O'Donnell, M., and Carrington, E. (2018). Radio tracking detects thermoregulation at a snail's pace. J. Exp. Mar. Biol. Ecol. 499, 17-25. doi: 10.1016/j.jembe.2017.12.005
  57. Helmuth, B. (1999). Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data. Ecology 80, 15-34.
  58. Helmuth, B. (2002). How do we measure the environment? Linking intertidal thermal physiology and ecology through biophysics. Integr. Comp. Biol. 42, 837-845. doi: 10.1093/icb/42.4.837
  59. Helmuth, B., Broitman, B. R., Blanchette, C. A., Gilman, S., Halpin, P., Harley, C. D. G., et al. (2006). Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol. Monogr. 76, 461-479. doi: 10.1890/ 0012-9615(2006)076[0461:MPOTSI]2.0.CO;
  60. Helmuth, B., Choi, F., Matzelle, A., Torossian, J. L., Morello, S. L., Mislan, K. A. S., et al. (2016). Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3:160087. doi: 10.1038/sdata.2016.87
  61. Helmuth, B., Harley, C. D. G., Halpin, P. M., O'Donnell, M., Hofmann, G. E., and Blanchette, C. A. (2002). Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015-1017. doi: 10.1126/science.1076814
  62. Helmuth, B., Yamane, L., Lalwani, S., Matzelle, A., Tockstein, A., and Gao, N. (2011). Hidden signals of climate change in intertidal ecosystems: what (not) to expect when you are expecting. J. Exp. Mar. Biol. Ecol. 400, 191-199. doi:10.1016/j.jembe.2011.02.004
  63. Helmuth, B. S., and Hofmann, G. E. (2001). Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 201, 374-384. doi: 10.2307/1543615
  64. Helmuth, B. S. T. (1998). Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol. Monogr. 68, 51-74.
  65. Herring, S. C., Hoell, A., Hoerling, M. P., Kossin, J. P., Schreck III, C. J. and Stott, P. A. (2016). Explaining extreme events of 2015 from a climate perspective. Bull. Meteor. Soc. 97, S1-S145.
  66. Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., et al. (2016). A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227-238. doi: 10.1016/j.pocean.2015.12.014
  67. Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., et al. (2018). "Impacts of 1.5 • C global warming on natural and human systems, " in Global Warming of 1.5 • C. An IPCC Special Report on the Impacts of Global Warming of 1.5 • C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, eds V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield. In Press.
  68. Hunt, H. L. (1997). Structure and Dynamics of Intertidal Mussel (Mytilus trossulus, Mytilus edulis) Assemblages. PhD Thesis, Dalhousie University, Halifax, NS.
  69. Hunt, H. L., and Scheibling, R. E. (2001). Patch dynamics of mussels on rocky shores: integrating process to understand pattern. Ecology 82, 3213-3231. doi: 10.2307/2679845
  70. Hunt, H. L., and Scheibling, R. E. (2002). Movement and wave dislodgement of mussels on a wave-exposed rocky shore. Veliger 45, 273-277.
  71. Hutchins, L. W. (1947). The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325-335.
  72. Iacarella, J. C., and Helmuth, B. (2011). Experiencing the salt marsh environment through the foot of Littoraria irrorata: behavioral responses to thermal and desiccation stresses. J. Exp. Mar. Biol. Ecol. 409, 143-153. doi: 10.1016/j.jembe.2011.08.011
  73. Jost, J., and Helmuth, B. (2007). Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic Ribbed Mussel, and their effects on mussel mortality. Biol. Bull. 213, 141-151. doi: 10.2307/25066630
  74. Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos 115, 186-191. doi: 10.1111/j.2006.0030-1299.14908.x
  75. Kearney, M., Simpson, S. J., Raubenheimer, D., and Helmuth, B. (2010). Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B 365, 3469-3483. doi: 10.1098/rstb.2010.0034
  76. Kearney, M. R., Matzelle, A., and Helmuth, B. (2012). Biomechanics meets the ecological niche: the importance of temporal data resolution. J. Exp. Biol. 215, 922-933. doi: 10.1242/jeb.059634
  77. Kershaw, K. A. (1985). Physiological Ecology of Lichens. Cambridge: Cambridge University Press.
  78. Kish, N. E., Helmuth, B., and Wethey, D. S. (2016). Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations. Conserv. Physiol. 4:cow038. doi: 10.1093/conphys/cow038
  79. Kordas, R. L., Harley, C. D. G., and O'Connor, M. I. (2011). Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218-226. doi: 10.1016/j.jembe.2011.02.029
  80. Koussoroplis, A. M., Pincebourde, S., and Wacker, A. (2017). Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecol. Monogr. 87, 178-197. doi: 10.1002/ ecm.1247
  81. Kroeker, K. J., Sanford, E., Rose, J. M., Blanchette, C. A., Chan, F., Chavez, F. P., et al. (2016). Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771-779. doi: 10.1111/ele.12613
  82. Lathlean, J. A., Ayre, D. J., Coleman, R. A., and Minchinton, T. E. (2014). Using biomimetic loggers to measure interspecific and microhabitat variation in body temperatures of rocky intertidal invertebrates. Mar. Freshw. Res. 66, 86-94. doi: 10.1071/MF13287
  83. Lathlean, J. A., and Seuront, L. (2014). Infrared thermography in marine ecology: methods, previous applications, and future challenges. Mar. Ecol. Prog. Ser. 514, 263-277. doi: 10.3354/meps10995
  84. Lathlean, J. A., Seuront, L., McQuaid, C. D., Terence, P. T. N., Zardi, G. I., and Nicastro, K. R. (2016a). Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels. PLoS ONE 11:e0152556. doi: 10.1371/journal.pone.0152556
  85. Lathlean, J. A., Seuront, L., McQuaid, C. D., Terence, P. T. N., Zardi, G. I., and Nicastro, K. R. (2016b). Size and position (sometimes) matter: small-scale patterns of heat stress associated with two co-occurring mussels with different thermoregulatory behaviour. Mar. Biol. 163:189. doi: 10.1007/s00227-016-2966-z
  86. Lathlean, J. A., Seuront, L., and Ng, T. P. T. (2017). On the edge: The use of infrared thermography in monitoring responses of intertidal organisms to heat stress. Ecol. Indic. 81, 567-577. doi: 10.1016/j.ecolind.2017.04.057
  87. Leeuw, T., Boss, E., and Wright, D. (2013). In situ measurements of phytoplankton fluorescence using low cost electronics. Sensors 13, 7872-7883. doi: 10.3390/s130607872
  88. Lewis, J. B. (1963). Environmental and tissue temperatures of some tropical intertidal marine animals. Biol. Bull. 124, 277-284.
  89. Lima, F., Burnett, N., Helmuth, B., Kish, N., and Aveni-Deforge, K. (2011). "Monitoring the intertidal environment with biomimetic devices, " in Biomimetic Based Applications, ed A. George (InTech). doi: 10.5772/ 14153
  90. Lima, F. P., and Wethey, D. S. (2009). Robolimpets: measuring intertidal body temperatures using biomimetic loggers. Limnol. Oceanogr. Methods 7, 347-353. doi: 10.4319/lom.2009.7.347
  91. Lockridge, G., Dzwonkowski, B., Nelson, R., and Powers, S. (2016). Development of a low-cost Arduino-based sonde for coastal applications. Sensors 16:528. doi: 10.3390/s16040528
  92. Lubchenco, J. (1980). Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 333-344.
  93. Marshall, D. J., McQuaid, C. D., and Williams, G. A. (2010). Non-climatic thermal adaptation: implications for species' responses to climate warming. Biol. Lett. 6, 669-673. doi: 10.1098/rsbl.2010.0233
  94. Marshall, D. J., Rezende, E. L., Baharuddin, N., Choi, F., and Helmuth, B. (2015). Thermal tolerance and climate warming sensitivity in tropical snails. Ecol. Evol. 5, 5905-5919. doi: 10.1002/ece3.1785
  95. McAfee, D., Bishop, M. J., Yu, T. N., and Williams, G. A. (2018). Structural traits dictate abiotic stress amelioration by intertidal oysters. Funct. Ecol. 27, 249. doi: 10.1111/1365-2435.13210
  96. Meola, C., and Carlomagno, G. M. (2004). Recent advances in the use of infrared thermography. Meas. Sci. Technol. 15, 27-58. doi: 10.1088/0957-0233/15/9/R01
  97. Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., et al. (2006). North American regional reanalysis. Bull. Am. Meteorol. Soc. 87:3. doi: 10.1175/BAMS-87-3-343
  98. Miller, L. P., and Denny, M. W. (2016). Importance of behavior and morphological traits for controlling body temperature in Littorinid snails. Biol. Bull. 220, 209-223. doi: 10.1086/BBLv220n3p209
  99. Miller, L. P., and Dowd, W. W. (2017). Multimodal in situ datalogging quantifies inter-individual variation in thermal experience and persistent origin effects on gaping behavior among intertidal mussels (Mytilus californianus). J. Exp. Biol. 220, 4305-4319. doi: 10.1242/jeb.164020
  100. Mislan, K. A., and Wethey, D. S. (2011). Gridded meteorological data as a resource for mechanistic macroecology in coastal environments. Ecol. Appl. 21, 2678-2690. doi: 10.1890/10-2049.1
  101. Mislan, K. A., and Wethey, D. S. (2015). A biophysical basis for patchy mortality during heat waves. Ecology 96, 902-907. doi: 10.1890/14-1219.1
  102. Mislan, K. A. S., Helmuth, B., and Wethey, D. S. (2014). Geographical variation in climatic sensitivity of intertidal mussel zonation. Glob. Ecol. Biogeogr. 23, 744-756. doi: 10.1111/geb.12160
  103. Mitchell, J. W. (1976). Heat transfer from spheres and other animal forms. Biophys. J. 16, 561-569.
  104. Mitton, J. B. (1977). Shell color and pattern variation in Mytilus edulis and its adaptive significance. Chesapeake Sci. 18, 387-390. doi: 10.2307/1350595
  105. Monaco, C. J., and Helmuth, B. (2011). Tipping points, thresholds and the keystone role of physiology in marine climate change research. Adv. Mar. Biol. 60, 123-160. doi: 10.1016/B978-0-12-385529-9.00003-2
  106. Monaco, C. J., Wethey, D. S., Gulledge, S., and Helmuth, B. (2015). Shore- level size gradients and thermal refuge use in the predatory sea star Pisaster ochraceus: the role of environmental stressors. Mar. Ecol. Prog. Ser. 539, 191-205. doi: 10.3354/meps11475
  107. Monaco, C. J., Wethey, D. S., and Helmuth, B. (2016). Thermal sensitivity and the role of behavior in driving an intertidal predator-prey interaction. Ecol. Monogr. 86, 429-447. doi: 10.1002/ecm.1230
  108. Montalto, V., Sarà, G., Ruti, P. M., Dell'Aquila, A., and Helmuth, B. (2014). Testing the effects of temporal data resolution on predictions of the effects of climate change on bivalves. Ecol. Model. 278, 1-8. doi: 10.1016/j.ecolmodel.2014.01.019
  109. Montanholi, Y. R., Swanson, K. C., Palme, R., Schenkel, F. S., McBride, B. W., Lu, D., et al. (2010). Assessing feed efficiency in beef steers through feeding behaviour, infrared thermography and glucocorticoids. Animal 4, 692-701. doi: 10.1017/S1751731109991522
  110. Nagai, K., Honjo, T., Go, J., Yamashita, H., and Seok Jin, O. (2006). Detecting the shellfish killer Heterocapsa circularisquama (Dynophyceae) by measuring bivalve valve activity with a hall element sensor. Aquaculture 255, 395-401. doi: 10.1016/j.aquaculture.2005.12.018
  111. Ng, J. S. S., and Williams, G. A. (2006). Intraspecific variation in foraging behaviour: influence of shore height on temporal organization of activity in the chiton Acanthopleura japonica. Mar. Ecol. Prog. Ser. 321, 183-192. doi: 10.3354/meps321183
  112. Ng, T. P. T., Lau, S. L. Y., Seuront, L., Davies, M. S., Stafford, R., Marshall, D. J., et al. (2017). Linking behaviour and climate change in intertidal ectotherms: insights from littorinid snails. J. Exp. Mar. Biol. Ecol. 492, 121-131. doi: 10.1016/j.jembe.2017.01.023
  113. Nicastro, K. R., Zardi, G. I., McQuaid, C. D., Pearson, G. A., and Serrão, E. A. (2012). Love thy neighbour: group properties of gaping behaviour in mussel aggregations. PLoS ONE 7:e47382. doi: 10.1371/journal.pone.0047382
  114. Okamura, B. (1986). Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69, 341-347. doi: 10.1007/BF00377054
  115. Olabarria, C., Gestoso, I., Lima, F. P., Vázquez, E., Comeau, L. A., Gomes, F., et al. (2016). Response of two Mytilids to a heatwave: the complex interplay of physiology, behaviour and ecological interactions. PLoS ONE 11:e0164330. doi: 10.1371/journal.pone.0164330.3
  116. Paine, R. T. (1994). Marine Rocky Shores and Community Ecology: An Experimentalist's Perspective. Oldendorf; Luhe: Ecology Institute.
  117. Parsons, K. (2014). Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance. Boca Raton, FL: CRC Press.
  118. Pearson, G. A., Leston, A. L., and Mota, C. (2009). Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J. Ecol. 97, 450-462. doi: 10.1111/j.1365-2745.2009.01481.x
  119. Pershing, A. J., Alexander, M. A., Hernandez, C. M., Kerr, L. A., Le Bris, A., Mills, K. E., et al. (2015). Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350:6262, 809-812. doi: 10.1126/science.aac9819
  120. Petchey, O. L., Pontarp, M., Massie, T. M., Kéfi, S., Ozgul, A., Weilenmann, M., et al. (2015). The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597-611. doi: 10.1111/ele.12443
  121. Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., et al. (2016). Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7:13736. doi: 10.1038/ncomms13736
  122. Pfister, C. A., Wootton, J. T., and Neufeld, J. (2007). The relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system. Limnol. Oceanogr. 52, 1767-1775. doi: 10.4319/lo.2007.52.5.1767
  123. Pincebourde, S., and Casas, J. (2006). Leaf miner-induced changes in leaf transmittance cause variations in insect respiration rates. J. Insect Physiol. 52, 194-201. doi: 10.1016/j.jinsphys.2005.10.004
  124. Pincebourde, S., Sanford, E., Casas, J., and Helmuth, B. (2012). Temporal coincidence of environmental stress events modulates predation rates. Ecol. Lett. 15, 680-688. doi: 10.1111/j.1461-0248.2012.01785.x
  125. Pincebourde, S., Sanford, E., and Helmuth, B. (2008). Interaction between underwater and aerial body temperatures in influencing a top predator feeding rate in the intertidal. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 150:3. doi: 10.1016/j.cbpa.2008.04.184
  126. Pincebourde, S., Sanford, E., and Helmuth, B. (2009). An intertidal sea star adjusts thermal inertia to avoid extreme body temperatures. Am. Nat. 174, 890-897. doi: 10.1086/648065
  127. Place, S. P., O'Donnell, M. J., and Hofmann, G. E. (2008). Gene expression in the intertidal mussel Mytilus californianus: physiological response to environmental factors on a biogeographic scale. Mar. Ecol. Prog. Ser. 356, 1-14. doi: 10.3354/meps07354
  128. Porter, J., Arzberger, P., Braun, H., Bryant, P., Gage, S., Hansen, T., et al. (2005). Wireless sensor networks for ecology. BioScience 55, 561-572. doi: 10.1641/ 0006-3568(2005)055[0561:WSNFE]2.0.CO;
  129. Porter, W. P., Budaraju, S., Stewart, W. E., and Ramankutty, N. (2000). Calculating climate effects on birds and mammals: impacts on biodiversity, conservation, population parameters, and global community structure. Integr. Comp. Biol. 40, 597-630. doi: 10.1093/icb/40.4.597
  130. Porter, W. P., and Gates, D. M. (1969). Thermodynamic Equilibria of Animals with Environment. Ecol. Monogr. 39, 227-244. doi: 10.2307/1948545
  131. Porter, W. P., Mitchell, J. W., Beckman, W. A., and DeWitt, C. B. (1973). Behavioral implications of mechanistic ecology. Oecologia 13, 1-54.
  132. Pörtner, H. O., Peck, L. S., and Hirse, T. (2006). Hyperoxia alleviates thermal stress in the Antarctic bivalve, Laternula elliptica: evidence for oxygen limited thermal tolerance. Polar Biol. 29, 688-693. doi: 10.1007/s00300-005-0106-1
  133. Potter, K. A., Arthur Woods, H., and Pincebourde, S. (2013). Microclimatic challenges in global change biology. Glob. Change Biol. 19, 2932-2939. doi: 10.1111/gcb.12257
  134. Robert, K. A., and Thompson, M. B. (2003). Reconstructing Thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herpetol. Rev. 34, 130-132.
  135. Robinet, C., Rousselet, J., Pineau, P., Miard, F., and Roques, A. (2013). Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?. Ecol. Evol. 3, 2947-2957. doi: 10.1002/ece3.690
  136. Sarà, G., Kearney, M., and Helmuth, B. (2011). Combining heat-transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels. Chem. Ecol. 27, 135-145. doi: 10.1080/02757540.2011.552227
  137. Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., and Evans, T. A. (2013). Microhabitats reduce animal's exposure to climate extremes. Glob. Change Biol. 20, 495-503. doi: 10.1111/gcb.12439
  138. Scherrer, D., and Körner, C. (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602-2613. doi: 10.1111/j.1365-2486.2009.02122.x
  139. Scherrer, D., and Körner, C. (2011). Topographically controlled thermal- habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406-416. doi: 10.1111/j.1365-2699.2010. 02407.x Schneider, K. R., and Helmuth, B. (2007). Spatial variability in habitat temperature may drive patterns of selection between an invasive and native mussel species. Mar. Ecol. Prog. Ser. 339, 157-167. doi: 10.3354/meps339157
  140. Schneider, K. R., Wethey, D. S., Helmuth, B. S. T., and Hilbish, T. J. (2005). Implications of movement behavior on mussel dislodgement: exogenous selection in a Mytilus spp. hybrid zone. Mar. Biol. 146, 333-343. doi: 10.1007/s00227-004-1446-z
  141. Seabra, R., Wethey, D. S., Santos, A. M., and Lima, F. P. (2011). Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200-208. doi: 10.1016/j.jembe.2011.02.010
  142. Sears, M. W., Angilletta, M. J., Schuler, M. S., Borchert, J., Dilliplane, K. F., Stegman, M., et al. (2016). Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc. Natl. Acad. Sci. U.S.A. 113, 10595-10600. doi: 10.1073/pnas.1604824113
  143. Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. S., and Slotsbo, S. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372-1385. doi: 10.1111/ele.12686
  144. Smale, D. A., and Wernberg, T. (2009). Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27-37. doi: 10.3354/meps08132
  145. Somero, G. N. (2002). Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr. Comp. Biol. 42, 780-789. doi: 10.1093/icb/42.4.780
  146. Somero, G. N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol. 213, 912-920. doi: 10.1242/jeb.037473
  147. Sorte, C. J., Davidson, V. E., Franklin, M. C., Benes, K. M., Doellman, M. M., Etter, R. J., et al. (2016). Long-term declines in an intertidal foundation species parallel shifts in community composition. Glob. Change Biol. 23, 341-352. doi: 10.1111/gcb.13425
  148. Southward, A. J. (1958). Note on the temperature tolerances of some intertidal animals in relation to environmental temperatures and geographical distribution. J. Mar. Biol. Assoc. U.K. 37, 49-66. doi: 10.1017/S0025315400014818
  149. Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K. S., and Lima, M. (2002). Ecological effects of climate fluctuations. Science 297, 1292-1296. doi: 10.1126/science.1071281
  150. Stillman, J., and Somero, G. (1996). Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J. Exp. Biol. 199, 1845-1855.
  151. Sunday, J. M., Bates, A. E., and Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. Ser. B 278, 1823-1830. doi: 10.1098/rspb.2010.1295
  152. Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., et al. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl. Acad. Sci. U.S.A. 111, 5610-5615. doi: 10.1073/pnas.1316145111
  153. Sunday, J. M., Pecl, G. T., Frusher, S., Hobday, A. J., Hill, N., Holbrook, N. J., et al. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944-953. doi: 10.1111/ele.12474
  154. Szathmary, P. L., Helmuth, B., and Wethey, D. S. (2009). Climate change in the rocky intertidal zone: predicting and measuring the body temperature of a keystone predator. Mar. Ecol. Prog. Ser. 374, 43-56. doi: 10.3354/meps07682
  155. Thomas, F. I. M. (1987). The Hot and Cold of Life on Rocks: Determinants of Body Temperature in the Northern Rock Barnacle, Semibalanus Balanoides. Master's Thesis, Brown University, Providence, RI.
  156. Torossian, J. L., Kordas, R. L., and Helmuth, B. (2016). Cross-Scale approaches to forecasting biogeographic responses to climate change. Adv. Ecol. Res. 55, 371-433. doi: 10.1016/bs.aecr.2016.08.003
  157. Tsuchiya, M. (1983). Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rocky shores. J. Exp. Mar. Biol. Ecol. 66, 101-111. doi: 10.1016/0022-0981(83)90032-1
  158. UNFCCC (2015). FCCC/CP/2015/L.9/Rev.1. Adoption of the Paris Agreement. Paris: UNFCCC, 1-32.
  159. Van Alstyne, K. L., and Olson, T. K. (2014). Estimating variation in surface emissivities of intertidal macroalgae using an infrared thermometer and the effects on temperature measurements. Mar. Biol. 161, 1409-1418. doi: 10.1007/s00227-014-2429-3
  160. Vermeij, G. J. (1971). Temperature relationships of some tropical Pacific intertidal gastropods. Mar. Biol. 10, 308-314.
  161. Wethey, D. S. (1983). Geographic limits and local zonation: the barnacles Semibalanus (Balanus) and Chthamalus in New England. Biol. Bull. 165, 330-341.
  162. Wethey, D. S. (1984). Sun and shade mediate competition in the barnacles Chthamalus and Semibalanus: a field experiment. Biol. Bull. 167, 176-185.
  163. Wethey, D. S. (2002). Biogeography, competition, and microclimate: the barnacle Chthamalus fragilis in New England. Integr. Comp. Biol. 42, 872-880. doi: 10.1093/icb/42.4.872
  164. Wethey, D. S., Brin, L. D., Helmuth, B., and Mislan, K. A. S. (2011). Predicting intertidal organism temperatures with modified land surface models. Ecol. Modell. 222, 3568-3576. doi: 10.1016/j.ecolmodel.2011.08.019
  165. Williams, G. A., De Pirro, M., Cartwright, S., Khangura, K., Ng, W. C., Leung, P. T. Y., et al. (2011). Come rain or shine: the combined effects of physical stresses on physiological and protein-level responses of an intertidal limpet in the monsoonal tropics. Funct. Ecol. 25, 101-110. doi: 10.1111/j.1365-2435.2010.01760.x
  166. Williams, G. A., De Pirro, M., Leung, K. M. Y., and Morritt, D. (2005). Physiological responses to heat stress on a tropical shore: the benefits of mushrooming behaviour in the limpet Cellana grata. Mar. Ecol. Prog. Ser. 292, 213-224. doi: 10.3354/meps292213
  167. Williams, G. A., and Morritt, D. (1995). Habitat partitioning and thermal tolerance in a tropical limpet, Cellana grata. Mar. Ecol. Prog. Ser. 124, 89-103. doi: 10.3354/meps124089
  168. Williams, R. J. (1970). Freezing tolerance in Mytilus edulis. Comp. Biochem. 35, 145-161.
  169. Woodin, S. A., Hilbish, T. J., Helmuth, B., Jones, S. J., and Wethey, D. S. (2013). Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecol. Evol. 3, 3334-3346. doi: 10.1002/ece3.680
  170. Woods, H. A., Dillon, M. E., and Pincebourde, S. (2015). The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86-97. doi: 10.1016/j.jtherbio.2014.10.002
  171. World Meteorological Organization (2008). Guide to Meteorological Instruments and Methods of Observation, 7th Edn. WMO Report No. 8, I.2-3.
  172. Zardi, G. I., Nicastro, K. R., McQuaid, C. D., Hancke, L., and Helmuth, B. (2010). The combination of selection and dispersal helps explain genetic structure in intertidal mussels. Oecologia 165, 947-958. doi: 10.1007/s00442-010- 1788-9
  173. Zhou, X., Ji, X., Wang, B., Cheng, Y., Ma, Z., Choi, F., et al. (2018). Pido: predictive delay optimization for intertidal wireless sensor networks. Sensors 18, 1464-1482. doi: 10.3390/s18051464