Abstract
Vortex breakdown is simulated by a three dimensional Lagrangian method using vortex filaments. The filaments are approximated by vortex elements and their velocity is computed by a Biot-Savart type law of interaction. The numerical calculations show the development of an axisymmetric bubble with a recirculation zone and resemble in many respects the results obtained in the physical experiments on vortex breakdown.
References (14)
- Batchelor, G. K. 1967. An introduction to fluid dynamics. Cambridge University Press.
- Benjamin, T. B. Mech. 14: 1962. Theory of the vortex breakdown phenomenon. 593-629. J. Fluid
- Chorin, A. J. 1973. Numerical study of slightly viscous flow. J. Fluid Mech. 57: 785-796.
- Chorin, A. J. & Bernard, P. S. 1913. Discretization of a vortex sheet with an example of roll up. J. Computational Phys. 13: 423-429.
- Gartshore, I. S. 1963. Some numerical solutions for the viscous core of an irrotational vortex. NRC Con. Aero Rep. LR-378.
- Hald, O. & Del Prete, V. 1978. equations. Math. Compo 32: Convergence of vortex methods for Euler's 791-809.
- Hall, M. G. 1972. Vortex breakdown. Ann. Rev. Fluid Mech. 4: 195-218.
- Leibovitch, S. 1976. Vortex breakdown: experiment and theory. Cornell University, College of Engineering Energy Project, Rep. EPR-76-8.
- Leibovitch, S. 1978. Fluid Mech. 10: The structure of the vortex breakdown. 221-246.
- Ann. Rev.
- Ludwig, H. 1970. Vortex breakdown. Dtsh Luft Raumfahrt, Rep. 70-40.
- Mager, A. 1972. Dissipation and breakdown of a wing=tip vortex. J-.-FTuio Mech. 55: 609-628.
- Sarpkaya, T. 1971. On stationary and travelling vortex breakdowns. J. Fluid Mech. 45: 545-559.
- Squire, H. B. 1960. Analysis of the "vortex breakdown" phenomenon. Part 1. Aero Dept., Imperial ColI. London, Rep. 102.