Academia.eduAcademia.edu

Outline

Optimization of wind field retrieval procedures

2005, Applied Mathematics and Computation

https://doi.org/10.1016/J.AMC.2005.01.033

Abstract

We study the formulation of the problem to retrieve wind fields from radar data. Our formulation allows us to consider the retrieved wind fields as a function of radar locations. We examine the properties of this function with the objective of determining ''best'' locations for observations. Problems are then posed to determine radar locations to minimize certain criteria involving retrieval errors over a class of test wind fields. A numerical study is presented illustrating the theory developed.

References (12)

  1. Gilbarg, Trudinger, Elliptic Partial Differential Equations, Springer-Verlag, New York, 1977.
  2. J.L. Lions, Distributed Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York, 1969.
  3. D.G. Luenberger, Optimization by Vector Space Methods, Wiley, New York, 1969.
  4. V.G. MaxÕja, Sobolev Spaces, Springer-Verlag, New York, 1985.
  5. J. Mewes, A. Shapiro, Use of the vorticity equation in dual-Doppler analysis of the vertical velocity field, J. Atmos. Ocean. Technol. 19 (2002) 543-567.
  6. H.L. Royden, Real Analysis, third ed., Macmillan Publishing Company, New York, 1988.
  7. M. Schult, Spline Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1973.
  8. A. Shapiro, J. Mewes, New formulations of dual-Doppler wind analysis, J. Atmos. Ocean. Technol. 16 (1999) 782-792.
  9. A. Shapiro, The use of an exact solution of the Navier-Stokes equations in a validation test of a three-dimensional nonhydrostatic numerical model, Month. Weather Rev. 121 (1999) 2420- 2425.
  10. A. Shapiro, P. Robinson, J. Wurman, J. Gao, Single-Doppler velocity retrieval with rapid scan radar data, J. Atmos. Ocean. Technol. 20 (2000) 1758-1774.
  11. G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
  12. R. Temam, Navier-Stokes Equations, North-Holland, New York, 1979.