Academia.eduAcademia.edu

Outline

Bayesian retrieval of scatterometer wind fields

www-users.aston.ac.uk

Abstract

The retrieval of wind fields from scatterometer observations has traditional been separated into two phases; local wind vector retrieval and ambiguity removal. Operationally, a forward model relating wind vector to backscatter is inverted, typically using look up tables, to retrieve up ...

References (33)

  1. Abrahamsen, P., A Review of Gaussian Ran- dom Fields and Correlation Functions, Sec- ond Edition, Technical Report No. 917, Nor- wegian Computing Center, Box 114 Blindern, N-0314 Oslo, NORWAY, 1997. Available from http://www.nr.no/research/sand/articles.html
  2. Bishop, C. M., Neural Networks for Pattern Recognition, 482 pp., Oxford University Press, Oxford, 1995.
  3. Bishop, C. M., Mixture Density Networks, Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, Birmingham, UK, 1994. Available from: http://www.ncrg.aston.ac.uk/ Cornford, D., I. T. Nabney, and G. Ramage, Improved Neural Network Scatterometer Forward Models, Jour- nal of Geophysical Research, submitted, 2000.
  4. Cornford, D., I. T. Nabney, and C. K. I. Williams, Adding Constrained Discontinuities to Gaussian Process Mod- els of Wind Fields, in Advances in Neural Information Processing Systems 11, M. S. Kearns, S.A. Solla and C. A. Cohn (eds), MIT Press, Cambridge, Massachusetts, 1999. Available from http://www.ncrg.aston.ac.uk/.
  5. Cornford, D., Non-Zero Mean Gaussian Process Prior Wind Field Models, Technical Report NCRG/98/020,Neural Computing Research Group, Aston University, Birmingham, U.K., 1998. Available from http://www.ncrg.aston.ac.uk/.
  6. Cornford, D., Flexible Gaussian Process Wind Field Models, Technical Report NCRG/98/017,Neural Computing Research Group, Aston Univer- sity, Birmingham, U.K., 1998. Available from http://www.ncrg.aston.ac.uk/.
  7. Cressie, N. A. C., Statistics for Spatial Data, John Wiley and Sons, New York, 1993.
  8. Daley, R., Atmospheric Data Analysis, 457 pp., Cam- bridge University Press, Cambridge, 1991.
  9. Dickinson, S. and R. A. Brown, A Study of Near-Surface Winds in Marine Cyclones Using Multiple Satellite Sensors, Journal of Applied Meteorology, 35, 769-781, 1996.
  10. Evans, D. J., D. Cornford, and I. T. Nabney, Structured Neural Network Modelling of Multi-valued Functions for Wind Vector Retrieval from Satellite Scatterome- ter Measurements, Neurocomputing Letters, accepted, 1999.
  11. Figa, J. and Stoffelen, A., On the Assimilation og Ku- Band Scatterometer Winds for Weather Analysis and Forecasting, IEEE Transactions on Geoscience and Re- mote Sensing, submitted, 1999.
  12. Gilks, W.R., S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice, 486 pp., Chap- man and Hall, London, 1996.
  13. Haltiner, G. J. and R. T. Williams, Numerical Prediction and Dynamic Meteorology, 477 pp., John Wiley, Chich- ester, 1980.
  14. Hoffman, R. N., SASS Wind Ambiguity Removal by Di- rect Minimization. Part II: Use of Smoothness and Dy- namical Constraints, Monthly Weather Review, 112, 1829-1852, 1984.
  15. Homleid, M. and L-A. Breivik, Preparations for the As- similation of ERS-1 Surface Wind Observations into Numerical Weather Prediction Models, Tellus, 47A, 62-79, 1995.
  16. Levy, G., Southern-Hemisphere Low-Level Wind Circula- tion Statistics from the SeaSat Scatterometer. Annales Geophysicae -Atmospheres, Hydroshperes and Space Sciences, 12, 65-79, 1994.
  17. Long, D. G. Wind Field Model-Based Estimation of SEASAT Scatterometer Winds, Journal of Geophysi- cal Research, 98, 14651-14668, 1993.
  18. Lorenc, A. C.,, Analysis Methods for Numerical Weather Prediction, Quarterly Journal of the Royal Meteorolog- ical Society, 112, 1177-1194, 1986.
  19. Lorenc, A. C., R. S. Bell, S. J. Foreman, C. D. Hall, D. L. Harrison, M. W. Holt, D. Offiler, and S. G. Smith, The Use of ERS-1 Products in Operational Meteorology, Advances in Space Research, 13, 19-27, 1993.
  20. Morgan, N. and Boulard, H. A., Neural Networks for Sta- tistical Recognition of Continuous Speech, Proceedings of the IEEE, 83, 742-770, 1995.
  21. Offiler, D., ERS-1 wind retrieval algorithms, U.K. Mete- orological Office Memorandum No. 86, Meteorological Office, Bracknell, UK, 1987.
  22. Offiler, D., The Calibration of ERS-1 Satellite Scatterom- eter Winds, Journal of Atmospheric and Oceanic Tech- nology, 11, 1002-1017, 1994.
  23. Richaume, P., F. Badran, M. Crepon, C. Mejia, H. Roquet, S. Thiria, Neural Network Wind Retrieval from ERS-1 Scatterometer Data, Journal of Geophysi- cal Research, submitted.
  24. Royle, J. A., L. M. Berliner, C. K. Wikle and R. Milliff, A Hierarchical Spatial Model for Constructing Wind Fields from Scatterometer Data in the Labrador Sea, in Case Studies in Bayesian Statistics, (in review).
  25. Schyberg, H. and L-A. Breivik, Ambiguity Removal Algo- rithm Evaluation, Research Report No. 64, Norwegian Meteorological Institute, Oslo, Norway, 1998.
  26. Shaffer, S. J., R. S. Dunbar, S. V. Hsiao, and D. G. Long, A Median-Filter-Based Ambiguity Removal Algorithm for NSCAT, IEEE Transactions on Geoscience and Re- mote Sensing, 29, 167-174, 1991.
  27. Stoffelen, A., Scatterometry, PhD Thesis, Universiteit Utrecht, 1998.
  28. Stoffelen, A., Error Modelling and Calibration; Towards the True Near Surface Wind Speed. Journal of Geo- physical Research, 103, 7755-7766, 1998.
  29. Stoffelen, A. and D. Anderson, Scatterometer Data In- terpretation: Estimation and Validation of the Trans- fer Function CMOD4. Journal of Geophysical Research, 102, 5767-5780, 1997.
  30. Stoffelen, A. and D. Anderson, Ambiguity Removal and Assimilation of Scatterometer Data, Quarterly Journal of the Royal Meteorological Society, 123, 491-518, 1997.
  31. Tarantola, A., Inverse Problem Theory, Elsevier, London, 613pp, 1987.
  32. Williams, C. K. I., Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Be- yond, in Learning and Inference in Graphical Models, M. I. Jordan (ed.), Kluwer, London, 1998.
  33. D. Cornford and Ian T. Nabney and David J. Evans, Neural Computing Research Group, Electronic Engineering and Computer Science, Aston University, Aston Triangle, Birmingham B7 4ET, UK (e-mail: d.cornford@@aston.ac.uk, i.t.nabney@@aston.ac.uk) This preprint was prepared with AGU's L A T E X macros v5.01. File fwd˙ncrg formatted July 2, 2007.