Academia.eduAcademia.edu

Outline

Computing multidimensional persistence

2010, Journal of Computational Geometry

Abstract

The theory of multidimensional persistence captures the topology of a multifiltration-a multiparameter family of increasing spaces. Multifiltrations arise naturally in the topological analysis of scientific data. In this paper, we give a polynomial time algorithm for computing multidimensional persistence. We recast this computation as a problem within computational commutative algebra, and utilize algorithms from this area to solve it. While the resulting problem is Expspace-complete and the standard algorithms take doubly-exponential time, we exploit the structure inherent within multifiltrations to yield practical algorithms. We implement all algorithms in the paper and provide statistical experiments to demonstrate their feasibility.

References (24)

  1. of Computational Geometry jocg.org corresponds to clustering multiparameterized data, This fresh perspective, as well as a new arsenal of computational tools, allows us to attack an old and significant problem in data analysis.
  2. G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior of spaces of natural images. International Journal of Computer Vision, 76(1):1-12, 2008.
  3. G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete & Computational Geometry, 42(1):71-93, 2009.
  4. CoCoATeam. CoCoA: a system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it.
  5. D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by updating persistence in linear time. In Proc. ACM Symposium on Computational Geometry, pages 119 -126, 2006.
  6. A. Collins, A. Zomorodian, G. Carlsson, and L. Guibas. A barcode shape descriptor for curve point cloud data. Computers and Graphics, 28:881-894, 2004.
  7. D. A. Cox, J. Little, and D. O'Shea. Using algebraic geometry, volume 185 of Graduate Texts in Mathematics. Springer, New York, second edition, 2005.
  8. V. de Silva, R. Ghrist, and A. Muhammad. Blind swarms for cov- erage in 2-D. In Proceedings of Robotics: Science and Systems, 2005. http://www.roboticsproceedings.org/rss01/.
  9. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and sim- plification. Discrete & Computational Geometry, 28:511-533, 2002.
  10. S. Eilenberg and J. A. Zilber. Semi-simplicial complexes and singular homology. Annals of Mathematics, 51(3):499-513, 1950.
  11. P. Frosini and M. Mulazzani. Size homotopy groups for computation of natural size distances. Bull. Belg. Math. Soc. Simon Stevin, 6(3):455-464, 1999.
  12. D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.
  13. A. Gyulassy, V. Natarajan, V. Pascucci, P. T. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3D scalar fields. In Proc. IEEE Visualization, pages 275-280, 2005.
  14. A. Hatcher. Algebraic Topology. Cambridge University Press, New York, NY, 2002. http://www.math.cornell.edu/~hatcher/AT/ATpage.html.
  15. T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology. Springer- Verlag, New York, NY, 2004.
  16. M. Levoy and P. Hanrahan. Light field rendering. In Proc. SIGGRAPH, pages 31-42, 1996.
  17. Y. Matsumoto. An Introduction to Morse Theory, volume 208 of Iwanami Series in Modern Mathematics. American Mathematical Society, Providence, RI, 2002.
  18. E. W. Mayr. Some complexity results for polynomial ideals. Journal of Complexity, 13(3):303-325, 1997.
  19. G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. L. Ringach. Topo- logical analysis of population activity in visual cortex. Journal of Vision, 8(8):1-18, 6 2008.
  20. G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proc. SIG- GRAPH, pages 311-318, 1994.
  21. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, UK, second edition, 2003.
  22. F. Zhao and L. J. Guibas. Wireless Sensor Networks: An Information Processing Approach. Morgan-Kaufmann, San Francisco, CA, 2004.
  23. A. Zomorodian. Computational topology. In M. Atallah and M. Blanton, editors, Algorithms and Theory of Computation Handbook, volume 2, chapter 3. Chapman & Hall/CRC Press, Boca Raton, FL, second edition, 2010.
  24. A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete & Compu- tational Geometry, 33(2):249-274, 2005.