Academia.eduAcademia.edu

Outline

The persistence space in multidimensional persistent homology

2013, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

https://doi.org/10.1007/978-3-642-37067-0-16

Abstract

Multidimensional persistent modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. Furthermore, it is presented a method to visualize topological features of a shape via persistence spaces. Finally, it is shown that this method is resistant to perturbations of the input data.

References (27)

  1. Biasotti, S., Bai, X., Bustos, B., Cerri, A., Giorgi, D., Li, L., Mortara, M., Sipiran, I., Zhang, S., Spagnuolo, M.: SHREC'12 Track: Stability on Abstract Shapes. pp. 101-107. Eurographics Association, Cagliari, Italy (2012)
  2. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Pa- paleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 1-87 (2008)
  3. Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer Publishing Company, Incorporated, 1 edn. (2008)
  4. Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Amer. Math. Soc. 138, 3003-3017 (2010)
  5. Cagliari, F., Landi, C.: Finiteness of rank invariants of multidimensional persistent homology groups. Appl. Math. Lett. 24(4), 516-518 (2011)
  6. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discr. Comput. Geom. 42(1), 71-93 (2009)
  7. Cavazza, N., Ethier, M., Frosini, P., Kaczynski, T., Landi, C.: Comparison of persis- tent homologies for vector functions: from continuous to discrete and back (2012), http://arxiv.org/abs/1201.3217
  8. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multi- dimensional persistent homology are stable functions. Math. Method. Appl. Sci. (accepted for publication), available at http://amsacta.cib.unibo.it/2923/
  9. Cerri, A., Landi, C.: Persistence space of vector-valued continuous functions, manuscript, available at http://www.dm.unibo.it/ ~cerri/Publications.html
  10. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.: Gromov- Hausdorff stable signatures for shapes using persistence. Computer Graphics Fo- rum 28(5), 1393-1403 (2009)
  11. Chen, C., Freedman, D.: Topology noise removal for curve and surface evolution. In: Proceedings of the Medical Computer Vision Workshop (MCV) (in conjunction with MICCAI). pp. 31-42. MCV'10, Springer-Verlag, Berlin, Heidelberg (2011)
  12. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr.Comput. Geom. 37(1), 103-120 (2007)
  13. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2009)
  14. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim- plification. Discrete Comput. Geom. 28(4), 511-533 (2002)
  15. Edelsbrunner, H., Symonova, O.: The adaptive topology of a digital image. In: Voronoi Diagrams in Science and Engineering (ISVD), 2012 Ninth International Symposium on. pp. 41-48 (2012)
  16. Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Engrg. Comm. Comput. 12(4), 327-349 (2001)
  17. Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. and Image Anal. 9, 596-603 (1999)
  18. Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bulletin of the Belgian Mathematical Society 6(3), 455-464 (1999)
  19. Letscher, D., Fritts, J.: Image segmentation using topological persistence. In: Pro- ceedings of the International Conference on Computer Analysis of Images and Patterns. pp. 587-595. CAIP'07 (2007)
  20. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. In: CVPR '07. IEEE Conference on Computer Vision and Pattern Recognition. pp. 1-8 (2007)
  21. Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.): Topological Methods in Data Analysis and Visualization. MATHEMATICS AND VISUALIZATION, Springer (2011)
  22. Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Transactions on Visualization and Com- puter Graphics 18, 2382-2391 (2012)
  23. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646-1658 (2011)
  24. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22(12) (2000)
  25. Tangelder, J., Veltkamp, R.: A survey of content-based 3D shape retrieval methods. Multimedia Tools and Applications 39(3), 441-471 (2008)
  26. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99-107 (1993)
  27. Zheng, Y., Gu, S., Edelsbrunner, H., Tomasi, C., Benfey, P.: Detailed reconstruc- tion of 3D plant root shape. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV. pp. 2026-2033. IEEE (2011)