The persistence space in multidimensional persistent homology
2013, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
https://doi.org/10.1007/978-3-642-37067-0-16Abstract
Multidimensional persistent modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. Furthermore, it is presented a method to visualize topological features of a shape via persistence spaces. Finally, it is shown that this method is resistant to perturbations of the input data.
References (27)
- Biasotti, S., Bai, X., Bustos, B., Cerri, A., Giorgi, D., Li, L., Mortara, M., Sipiran, I., Zhang, S., Spagnuolo, M.: SHREC'12 Track: Stability on Abstract Shapes. pp. 101-107. Eurographics Association, Cagliari, Italy (2012)
- Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Pa- paleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 1-87 (2008)
- Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer Publishing Company, Incorporated, 1 edn. (2008)
- Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Amer. Math. Soc. 138, 3003-3017 (2010)
- Cagliari, F., Landi, C.: Finiteness of rank invariants of multidimensional persistent homology groups. Appl. Math. Lett. 24(4), 516-518 (2011)
- Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discr. Comput. Geom. 42(1), 71-93 (2009)
- Cavazza, N., Ethier, M., Frosini, P., Kaczynski, T., Landi, C.: Comparison of persis- tent homologies for vector functions: from continuous to discrete and back (2012), http://arxiv.org/abs/1201.3217
- Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multi- dimensional persistent homology are stable functions. Math. Method. Appl. Sci. (accepted for publication), available at http://amsacta.cib.unibo.it/2923/
- Cerri, A., Landi, C.: Persistence space of vector-valued continuous functions, manuscript, available at http://www.dm.unibo.it/ ~cerri/Publications.html
- Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.: Gromov- Hausdorff stable signatures for shapes using persistence. Computer Graphics Fo- rum 28(5), 1393-1403 (2009)
- Chen, C., Freedman, D.: Topology noise removal for curve and surface evolution. In: Proceedings of the Medical Computer Vision Workshop (MCV) (in conjunction with MICCAI). pp. 31-42. MCV'10, Springer-Verlag, Berlin, Heidelberg (2011)
- Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr.Comput. Geom. 37(1), 103-120 (2007)
- Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2009)
- Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim- plification. Discrete Comput. Geom. 28(4), 511-533 (2002)
- Edelsbrunner, H., Symonova, O.: The adaptive topology of a digital image. In: Voronoi Diagrams in Science and Engineering (ISVD), 2012 Ninth International Symposium on. pp. 41-48 (2012)
- Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Engrg. Comm. Comput. 12(4), 327-349 (2001)
- Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. and Image Anal. 9, 596-603 (1999)
- Frosini, P., Mulazzani, M.: Size homotopy groups for computation of natural size distances. Bulletin of the Belgian Mathematical Society 6(3), 455-464 (1999)
- Letscher, D., Fritts, J.: Image segmentation using topological persistence. In: Pro- ceedings of the International Conference on Computer Analysis of Images and Patterns. pp. 587-595. CAIP'07 (2007)
- Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. In: CVPR '07. IEEE Conference on Computer Vision and Pattern Recognition. pp. 1-8 (2007)
- Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.): Topological Methods in Data Analysis and Visualization. MATHEMATICS AND VISUALIZATION, Springer (2011)
- Rieck, B., Mara, H., Leitte, H.: Multivariate data analysis using persistence-based filtering and topological signatures. IEEE Transactions on Visualization and Com- puter Graphics 18, 2382-2391 (2012)
- Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646-1658 (2011)
- Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. PAMI 22(12) (2000)
- Tangelder, J., Veltkamp, R.: A survey of content-based 3D shape retrieval methods. Multimedia Tools and Applications 39(3), 441-471 (2008)
- Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99-107 (1993)
- Zheng, Y., Gu, S., Edelsbrunner, H., Tomasi, C., Benfey, P.: Detailed reconstruc- tion of 3D plant root shape. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV. pp. 2026-2033. IEEE (2011)