Academia.eduAcademia.edu

Outline

New bisimulation semantics for distributed systems

2007, Formal Techniques for …

https://doi.org/10.1007/978-3-540-73196-2_10

Abstract

Abstract. Bisimulation semantics are a very pleasant way to define the semantics of systems, mainly because the simplicity of their definitions and their nice coalgebraic properties. However, they also have some dis-advantages: they are based on a sequential ...

References (31)

  1. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357-365. Springer, Heidelberg (1989)
  2. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulation in Petri nets. In: Acta Informatica, vol. 28, pp. 231-264. Springer, Heidelberg (1991)
  3. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can't be traced. Journal of ACM 42(1), 232-268 (1995)
  4. Boudol, G., Castellani, I.: Concurrency and atomicity. In: Theoretical Computer Science, vol. 59, pp. 25-84. Elsevier, North-Holland (1988)
  5. Castellani, I., Hennessy, M.: Distributed bisimulations. Journal of the ACM 36(4), 887-911 (1989)
  6. de Simone, R.: Higher-Level Synchronising Devices in Meije-SCCS. In: Theoretical Computer Science, vol. 37, pp. 245-267. Elsevier, North-Holland (1985)
  7. Devillers, R.R.: Maximality Preserving Bisimulation. In: Theor. Comput. Sci., vol. 102(1), pp. 165-183. Elsevier, North-Holland (1992)
  8. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisim- ulation equivalence. In: Theoretical Computer Science, vol. 311, pp. 221-256. El- sevier, North-Holland (2004)
  9. Fiore, M.P., Cattani, G.L., Winskel, G.: Weak Bisimulation and Open Maps. In: Logic in Computer Science, LICS 1999, pp. 67-76. IEEE Computer Society, Los Alamitos (1999)
  10. Frutos-Escrig, D., Marroquín-Alonso, O., Rosa-Velardo, F.: Ubiquitous Systems and Petri Nets. In: Ubiquitous Web Systems and Intelligence. LNCS, vol. 3841, Springer, Heidelberg (2005)
  11. Frutos-Escrig, D., Gregorio-Rodríguez, C.: Bisimulations Up-to for the Linear Time Branching Time Spectrum. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 278-292. Springer, Heidelberg (2005)
  12. Frutos-Escrig, D., Palomino, M., Fábregas, I.: Searching for a canonical notion of simulation (In preparation)
  13. Lucero, G.F., Quemada, J.: Specifying the ODP Trader: An Introduction to E-LOTOS. In: 10th Int.Conf. on Formal Description Techniques and Protocol Specification, Testing and Verification, FORTE'97. IFIP Conference Proceedings, vol. 107, pp. 127-142.
  14. Chapman & Hall, Sydney (1998)
  15. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theoretical Computer Sci- ence 327(1-2), 71-108 (2004)
  16. Kiehn, A., Arun-Kumar, S.: Amortized bisimulations. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 320-334. Springer, Heidelberg (2005)
  17. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and obser- vations. Book in preparation. Available, at http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
  18. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation and open maps. In: Logic in Computer Science, LICS'93, IEEE Computer Society, Los Alamitos (1993)
  19. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei- delberg (1980)
  20. Nielsen, M., Winskel, G.: Petri Nets and Bisimulation. Theor. Comput. Sci. 153(1&2), 211-244 (1996)
  21. Park, D.: Concurrency and automata on infinite sequences. In: 5th GI-Conference on Theoretical Computer Science, pp. 167-183. Springer, Heidelberg (1981)
  22. Plotkin, G.D.: A structural approach to operational semantics. TR DAIMI FN-19, Computer Science Dept., Aarhus Univ. (1981)
  23. Rothe, J., Masulović,D.: A syntactical approach to weak (bi)-simulation for coal- gebras. In: Coalgebraic Methods in Computer Science, CMCS'02. ENTCS, vol. 65(1) Elsevier (2002)
  24. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3-80 (2000)
  25. Sangiorgi, D.: Bisimulation and Co-induction: Some Problems. In: Electr. Notes Theor. Comput. Sci., vol. 162, pp. 311-315. Elsevier, North-Holland (2006)
  26. Sokolova, A.: On compositions and paths for coalgebras. Technical report CSR- 05-26, TU Eindhoven (2005)
  27. Sokolova, A., de Vink, E.P., Woracek, H.: Weak Bisimulation for Action-Type Coalgebras. In: Category Theory and Computer Science, CTCS'04. ENTCS, vol. 112, pp. 211-228. Elsevier, North-Holland (2005)
  28. van Glabbeek, R.: The linear time -branching time spectrum I; the semantics of concrete, sequential processes. In: Handbook of Process Algebra Chapter 1, pp. 3-99. Elsevier, North-Holland (2001)
  29. Vogler, W.: Deciding History Preserving Bisimilarity. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) Automata, Languages and Program- ming. LNCS, vol. 510, pp. 495-505. Springer, Heidelberg (1991)
  30. Vogler, W.: Bisimulation and Action Refinement. Theor. Comput. Sci. 114(1), 173-200 (1993)
  31. Lüttgen, G., Vogler, W.: Bisimulation on speed: A unified approach. Theor. Com- put. Sci. 360(1-3), 209-227 (2006)