Academia.eduAcademia.edu

Outline

Safer Nanoformulation for the Next Decade

2015, Green Processes for Nanotechnology

https://doi.org/10.1007/978-3-319-15461-9_12

Abstract

the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

References (1,532)

  1. Anastas PT, Warner JC (2000) Green chemistry theory and practice. Oxford University Press, New York
  2. Mao Y, Park T-J et al (2007) Environmentally friendly methodologies of nanostructure syn- thesis. Small 3(7):1122-1139
  3. Cushing BL, Kolesnichenko VL et al (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893-3946
  4. Dahl JA, Maddux BLS et al (2007) Toward greener nanosynthesis. Chem Rev 107:2228-2269
  5. Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14(15):2355-2365
  6. Mitzi DB (2009) Solution processing of inorganic materials. Wiley, Hoboken
  7. Schubert U, Hüsing N et al (2008) Materials syntheses. Springer, Vienna
  8. Caruso F (ed) (2004) Colloids and colloid assemblies-synthesis, modifi cation, organization and utilization of colloid particles, 1st edn. Wiley-VCH, Weinheim
  9. Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  10. Schubert U, Hüsing N (2005) Synthesis of inorganic materials, 2nd edn. Wiley-VCH, Weinheim
  11. Glaister RM, Allen NA et al (1965) Comparison of methods for preparing fi ne ferrite pow- ders. Proc Brit Ceram Soc No 3:67-80
  12. Sritharan T, Boey FYC et al (2007) Synthesis of complex ceramics by mechanochemical activation. J Mater Process Technol 192-193:255-258
  13. Lazarevic ZZ, Jovalekic C et al (2012) Preparation and characterization of nano ferrites. Acta Phys Pol 121:682-686
  14. Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents-synthesis, formation assembly and applications. Springer, New York
  15. Muñoz-Espí R, Mastai Y et al (2013) Colloidal systems for crystallization processes from liquid phase (invited highlight). CrystEngComm 15(12):2175-2191
  16. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32-41
  17. Grzelczak M, Perez-Juste J et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783-1791
  18. Abalde-Cela S, Aldeanueva-Potel P et al (2010) Surface-enhanced Raman scattering bio- medical applications of plasmonic colloidal particles. J R Soc Interface 7:S435-S450
  19. Alvarez-Puebla RA, Liz-Marzan LM (2010) Environmental applications of plasmon assisted Raman scattering. Energy Environ Sci 3(8):1011-1017
  20. Wang YX, Yun WB et al (2003) Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424(6944):50-53
  21. Modeshia DR, Walton RI (2010) Solvothermal synthesis of perovskites and pyrochlores: crys- tallisation of functional oxides under mild conditions. Chem Soc Rev 39(11):4303-4325
  22. Sakdinawat A, Attwood D (2010) Nanoscale X-ray imaging. Nat Photon 4(12):840-848
  23. Romo-Herrera JM, Alvarez-Puebla RA et al (2011) Controlled assembly of plasmonic col- loidal nanoparticle clusters. Nanoscale 3(4):1304-1315
  24. Calvert P, Rieke P (1996) Biomimetic mineralization in and on polymers. Chem Mater 8(8):1715-1727
  25. Livage J, Sanchez C (2005) Towards a soft and biomimetic nanochemistry. Actual Chim 290-291:72-76
  26. Sanchez C, Arribart H et al (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277-288
  27. Andre R, Tahir MN et al (2012) Bioinspired synthesis of multifunctional inorganic and bio- organic hybrid materials. FEBS J 279:1737-1749
  28. Ma T-Y, Yuan Z-Y (2012) Bioinspired approach to synthesizing hierarchical porous materi- als. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  29. Lepoint T, Lepoint-Mullie F et al (1999) Single bubble sonochemistry. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, Netherlands, pp 285-290
  30. Kumar RV, Palchik O et al (2002) Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 9(2):65-70
  31. Wang H, Zhang J-R et al (2002) Preparation of copper monosulfi de and nickel monosulfi de nanoparticles by sonochemical method. Mater Lett 55(4):253-258
  32. Cansell F, Chevalier B et al (1999) Supercritical fl uid processing: a new route for materials synthesis. J Mater Chem 9:67-75
  33. Aimable A, Muhr H et al (2009) Continuous hydrothermal synthesis of inorganic nanopowders in supercritical water: towards a better control of the process. Powder Technol 190:99-106
  34. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in super- critical water. Materials 3:3794-3817
  35. Kuznestov VA (1973) Hydrothermal method for the growth of crystals. Sov Phys Crystallogr 17(4):775-804
  36. Labachev AN (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York
  37. Francis RJ, O'Hare D (1998) The kinetics and mechanisms of the crystallisation of micropo- rous materials J Chem Soc Dalton Trans 19:3133-3148
  38. Rickard DT, Wickman FE (1981) Chemistry and geochemistry of solutions at high tempera- ture and pressure. Pergamon, New York
  39. Laudise RA (1987) Hydrothermal crystal growth-some recent results. In: Dryburgh PM, Cockayne B, Barraclough KG (eds) Advanced crystal growth. Prentice Hall, New York, pp 267-286
  40. Whittingham MS, Guo J-D et al (1995) The hydrothermal synthesis of new oxide materials. Solid State Ion 75:257-268
  41. Whittingham MS (1996) Hydrothermal synthesis of transition metal oxides under mild con- ditions. Curr Opin Solid State Mater Sci 1(2):227-232
  42. Segal D (1997) Chemical synthesis of ceramic materials. J Mater Chem 7:1297-1305
  43. Somiya S, Roy R (2000) Hydrothermal synthesis of fi ne oxide powders. Bull Mater Sci 23:453-460
  44. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology-a technology for crystal growth and materials processing. Noyes, Park Ridge
  45. Feng S, Xu R (2001) New materials in hydrothermal synthesis. Acc Chem Res 34(3):239-247
  46. Yu S-H (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65-S75 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
  47. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82(1-2):1-78
  48. Sheets WC, Mugnier E et al (2006) Hydrothermal synthesis of delafossite-type oxides. Chem Mater 18(1):7-20
  49. Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured met- als with emphasis on iron compounds. Chem Pap 61(3):151-170
  50. Querejeta A, Varela A et al (2009) Hydrothermal synthesis: a suitable route to elaborate nano- manganites. Chem Mater 21(9):1898-1905
  51. Shi W, Song S et al (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42(13):5714-5743
  52. Ehrentraut D, Sato H et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Ch 52(4):280-335
  53. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(1):013001
  54. Chen X, Fan H et al (2005) Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J Cryst Growth 284:434-439
  55. Liu N, Chen X et al (2014) A review on TiO 2 -based nanotubes synthesized via hydrothermal method: formation mechanism, structure modifi cation, and photocatalytic applications. Catal Today 225:34-51
  56. Mai H-X, Sun L-D et al (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109(51):24380-24385
  57. Zhang J, Liu S et al (2011) A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H 2 -production activity. J Mater Chem 21(38):14655-14662
  58. Liu S, Lu X et al (2013) Preferential c-axis orientation of ultrathin SnS 2 nanoplates on gra- phene as high-performance anode for Li-Ion batteries. ACS Appl Mater Interfaces 5(5):1588-1595
  59. Zhang H, Wei B et al (2013) Cation exchange synthesis of ZnS-Ag 2 S microspheric compos- ites with enhanced photocatalytic activity. Appl Surf Sci 270:133-138
  60. Zhang Y-P, Liu W et al (2014) Morphology-structure diversity of ZnS nanostructures and their optical properties. Rare Metals 33(1):1-15
  61. Weiß Ö, Ihlein G et al (2000) Synthesis of millimeter-sized perfect AlPO 4 -5 crystals. Micropor Mesopor Mater 35-36:617-620
  62. Baruwati B, Nadagouda MN et al (2008) Bulk synthesis of monodisperse ferrite nanoparti- cles at water-organic interfaces under conventional and microwave hydrothermal treatment and their surface functionalization. J Phys Chem C 112:18399-18404
  63. Lorentzou S, Zygogianni A et al (2009) Advanced synthesis of nanostructured materials for environmental applications. J Alloys Compd 483(1-2):302-305
  64. Makovec D, Kodre A et al (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145-1158
  65. Goh SC, Chia CH et al (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater Chem Phys 120(1):31-35
  66. Moreira ML, Mambrini GP et al (2008) Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO 3 nanoparticles. Chem Mater 20(16):5381-5387
  67. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthe- sis. Nanoscale 2:1358-1374
  68. Pang J, Luan Y et al (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A 360:6-12
  69. Majcher A, Wiejak J et al (2013) A novel reactor for microwave hydrothermal scale-up nanopowder synthesis. Int J Chem Reactor Eng 11:361-368
  70. Zhou Y (2005) Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci 1:35-42
  71. Lou XW, Archer LA et al (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987-4019
  72. Tanaka D, Kitagawa S (2008) Template effects in porous coordination polymers. Chem Mater 20(3):922-931
  73. Thomas A, Goettmann F et al (2008) Hard templates for soft materials: creating nanostruc- tured organic materials. Chem Mater 20(3):738-755
  74. Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomateri- als by a soft-template approach. Chem Asian J 3(4):664-676
  75. Zhang Q, Wang WS et al (2009) Self-templated synthesis of hollow nanostructures. Nano Today 4(6):494-507
  76. Ethirajan A, Landfester K (2010) Functional hybrid materials with polymer nanoparticles as templates. Chem 16:9398-9412 (Copyright (C) 2014 American Chemical Society (ACS). All Rights Reserved.)
  77. Qi L (2010) Colloidal chemical approaches to inorganic micro-and nanostructures with con- trolled morphologies and patterns. Coord Chem Rev 254:1054-1071
  78. Ariga K, Ji QM et al (2012) Soft capsules, hard capsules, and hybrid capsules. Soft Mater 10(4):387-412
  79. Deleuze H, Backov R (2012) Integrative chemistry routes toward advanced functional hierar- chical foams. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  80. Kimling MC, Caruso RA (2012) Templating of macroporous or swollen macrostructured polymers. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  81. Petkovich ND, Stein A (2012) Colloidal crystal templating approaches to materials with hier- archical porosity. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  82. Su B-L, Sanchez C et al (2012) Insights into hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  83. Yan Q, Yu J et al (2012) Colloidal photonic crystals: fabrication and applications. Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim
  84. Zhang H (2012) Porous materials by templating of small liquid drops. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  85. Liu YD, Goebl J et al (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42(7):2610-2653
  86. Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materi- als: inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189-190:21-41
  87. Petkovich ND, Stein A (2013) Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42(9):3721-3739
  88. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and proper- ties of inorganic and hybrid thin fi lms having periodically organized nanoporosity Chem Mater 20:682-737
  89. Soler-Illia GJ, Sanchez C et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093-4138
  90. Rouquerol J, Avnir D et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739-1758
  91. Seo J, Sakamoto H et al (2010) Chemistry of porous coordination polymers having multi- modal nanospace and their multimodal functionality. J Nanosci Nanotechnol 10(1):3-20
  92. Xiao F-S, Meng X (2012) Zeolites with hierarchically porous structure: mesoporous zeolites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  93. Yokoi T, Tatsumi T (2012) Hierarchically porous materials in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  94. Zhang Y-H, Chen L-H et al (2012) Micro-macroporous structured zeolite. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  95. Janiak C, Henninger SK (2013) Porous coordination polymers as novel sorption materials for heat transformation processes. Chimia 67:419-424
  96. Moeller K, Bein T (2013) Mesoporosity-a new dimension for zeolites. Chem Soc Rev 42(9):3689-3707
  97. Crepaldi EL, Soler-Illia GJAA et al (2002) Design of transition metal oxide mesoporous thin fi lms. Stud Surf Sci Catal 141:235-242
  98. Grosso D, Cagnol F et al (2003) Amorphous and crystalline mesoporous materials prepared via evaporation. Self-assembled nanostructured materials. Mat Res Soc Symp Proc 775:91- 99, Lu Y, Brinker CJ, Antonietti M, Bai C (eds)
  99. Soler-Illia GJAA, Crepaldi EL et al (2003) Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci 8:109-126
  100. Hüsing N, Schubert U (2004) Porous inorganic-organic hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  101. Kickelbick G (2004) Hybrid inorganic-organic mesoporous materials. Angew Chem Int Ed 43:3102-3104
  102. Grosso D, Boissiere C et al (2006) Preparation, treatment and characterisation of nanocrystal- line mesoporous ordered layers. J Sol Gel Sci Technol 40:141-154
  103. Eder F, Hüsing N (2009) Mesoporous silica layers with controllable porosity and pore size. Appl Surf Sci 256:S18-S21
  104. Hoffmann F, Fröba M (2010) Silica-based mesoporous organic-inorganic hybrid materials. Wiley, New York
  105. Keppeler M, Holzbock J et al (2011) Inorganic-organic hybrid materials through post- synthesis modifi cation: impact of the treatment with azides on the mesopore structure. Beilstein J Nanotechnol 2:486-498
  106. Shi YF, Wan Y et al (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40(7):3854-3878
  107. Nakanishi K (2012) Hierarchically structured porous materials: application to separation sci- ences. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  108. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098-4140
  109. Ferey G, Haouas M et al (2014) Nanoporous solids: how do they form? An in situ approach. Chem Mater 26(1):299-309
  110. Ferey G (2007) Hybrid porous solids. Stud Surf Sci Catal 168:327-374
  111. Ferey G (2007) Metal-organic frameworks. The young child of the porous solids family. Stud Surf Sci Catal 170A:66-86
  112. Mu CZ, Xu F et al (2007) Application of functional metal-organic framework materials. Progr Chem 19(9):1345-1356
  113. O'Keeffe M, Peskov MA et al (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41(12):1782-1789
  114. Czaja AU, Trukhan N et al (2009) Industrial applications of metal-organic frameworks. Chem Soc Rev 38(5):1284-1293
  115. Ferey G, Sanchez, C et al. (2010) Solid inorganic-organic polycarboxylate hybrid material based on titanium, its method of preparation and uses, Mater thesis, Université Pierre et Marie CURIE, Paris Vi, FR, pp. 42
  116. McKinlay AC, Morris RE et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed 49(36):6260-6266
  117. Betard A, Fischer RA (2012) Metal-organic framework thin fi lms: from fundamentals to applications. Chem Rev 112:1055-1083 (Washington, DC, U.S.)
  118. Morey MS, O'Brien S et al (2000) Hydrothermal and postsynthesis surface modifi cation of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium. Chem Mater 12(4):898-911
  119. Moeller K, Yilmaz B et al (2011) One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc 133(14):5284-5295
  120. Calzaferri G, Bruhwiler D et al (2001) Quantum-sized silver, silver chloride and silver sulfi de clusters. J Imag Sci Tech 45(4):331-339
  121. Bruhwiler D, Leiggener C et al (2002) Luminescent silver sulfi de clusters. J Phys Chem B 106(15):3770-3777
  122. Leiggener C, Bruhwiler D et al (2003) Luminescence properties of Ag 2 S and Ag 4 S 2 in zeolite A. J Mater Chem 13(8):1969-1977
  123. Leiggener C, Calzaferri G (2005) Synthesis and luminescence properties of Ag 2 S and PbS clusters in zeolite A. Chemistry 11(24):7191-7198
  124. Wang YF, Bryan C et al (2002) Interface chemistry of nanostructured materials: ion adsorp- tion on mesoporous alumina. J Colloid Interface Sci 254(1):23-30
  125. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13(10):765-768
  126. Liu J, Liu F et al (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19(34):6073-6084
  127. Groger H, Kind C et al (2010) Nanoscale hollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials 3(8):4355-4386
  128. Hu J, Chen M et al (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472-5491
  129. Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145-164
  130. Bao Y, Yang YQ et al (2013) Research progress of hollow structural materials prepared via templating method. J Inorg Mater 28(5):459-468
  131. Zhang BH, Fan H et al (2013) Synthesis of mesoporous hollow inorganic micro-/nano- structures via self-templating methods. Chem J Chinese U Chinese 34(1):1-14
  132. Sarquis J (1980) Colloidal systems. J Chem Educ 57:602-605
  133. Everett DH (1989) Basic principles of colloid science [fotocopie]. Royal Society of Chemistry, London
  134. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. CRC Press, Boca Raton
  135. Fennell D, Wennerstroem H (1999) The colloidal domain. Wiley-VCH, New York
  136. Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, New York
  137. Bucak S, Rende D (2014) Colloid and surface chemistry, CRC Press, Boca Raton 165. Schramm L (2001) Dictionary of colloid and interface science. Wiley, New York
  138. Weller H (2003) Synthesis and self-assembly of colloidal nanoparticles. Philos Trans R Soc London, Ser A 361:229-240
  139. Goodwin J (2004) Colloids and interfaces with surfactants and polymers. Wiley, New York
  140. Eastoe J, Hollamby MJ et al (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128-130:5-15
  141. Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36(1):231-279
  142. Shaw D (1992) Introduction to Colloid and Surface Chemistry (Fourth Edition). Elsevier Ltd 171. Hamley IW (2007) Soft matter. Wiley, New York
  143. Cosgrove T (2010) Colloid science: principles, methods and applications. Wiley, New York
  144. Crespy D, Staff RH et al (2012) Chemical routes toward multicompartment colloids. Macromol Chem Phys 213:1183-1189
  145. Turkevich J, Stevenson PC et al (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55-75
  146. Ramsay JDF (1992) Characteristics of inorganic colloids. Pure Appl Chem 64:1709-1713
  147. Palberg T (1997) Colloidal crystallization dynamics. Curr Opin Colloid Interface Sci 2(6):607-614
  148. Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nano- crystal growth: "focusing" of size distributions. J Am Chem Soc 120:5343-5344
  149. Ruckenstein E, Djikaev YS (2005) Recent developments in the kinetic theory of nucleation. Adv Colloid Interface Sci 118(1-3):51-72
  150. Alekseeva AV, Bogatyrev VA et al (2006) Gold nanorods: synthesis and optical properties. Colloid J 68(6):661-678
  151. Roh K-H, Martin DC et al (2006) Triphasic nanocolloids. J Am Chem Soc 128:6796-6797
  152. Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351-374
  153. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696-1709
  154. Tao AR, Habas S et al (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310-325
  155. Gasser U (2009) Crystallization in three-and two-dimensional colloidal suspensions. J Phys Condens Matter 21(20)
  156. Aerts A, Haouas M et al (2010) Investigation of the mechanism of colloidal silicalite-1 crys- tallization by using DLS, SAXS, and Si-29 NMR spectroscopy. Chemistry 16(9):2764-2774
  157. Herlach DM, Klassen I et al (2010) Colloids as model systems for metals and alloys: a case study of crystallization. J Phys Condens Matter 22(15)
  158. Pileni MP (2011) Supra-and nanocrystallinities: a new scientifi c adventure. J Phys Condens Matter 23(50)
  159. Richter K, Birkner A et al (2011) Stability and growth behavior of transition metal nanopar- ticles in ionic liquids prepared by thermal evaporation: how stable are they really? Phys Chem Chem Phys 13:7136-7141
  160. Pileni MP (2012) Self organization of inorganic nanocrystals: unexpected chemical and physical properties. J Colloid Interface Sci 388:1-8
  161. Pileni MP (2012) Supra-and nanocrystallinity: specifi c properties related to crystal growth mechanisms and nanocrystallinity. Acc Chem Res 45(11):1965-1972
  162. Palberg T (2014) Crystallization kinetics of colloidal model suspensions: recent achieve- ments and new perspectives. J Phys Condens Matter 26(33)
  163. Bahnemann DW, Kormann C et al (1987) Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J Phys Chem 91(14):3789-3798
  164. Bahnemann DW (1993) Ultrasmall metal oxide particles: preparation, photophysical charac- terisation and photocatalytic properties. Isr J Chem 33(1):115-136
  165. Erdemir D, Lee AY et al (2009) Nucleation of crystals from solution: classical and two-step models. Acc Chem Res 42(5):621-629
  166. Xia Y, Xiong Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chem- istry meets complex physics? Angew Chem Int Ed 48:60-103
  167. Bronstein LM, Polarz S et al (2001) Sub-nanometer noble-metal particle host synthesis in porous silica monoliths. Adv Mater 13(17):1333-1336
  168. Pileni MP, Lalatonne Y et al (2004) Self assemblies of nanocrystals: preparation, collective properties and uses. Faraday Discuss 125:251-264
  169. Pileni MP (2007) Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 111(26):9019-9038
  170. Pileni MP (2008) Self-assembly of inorganic magnetic nanocrystals: a new physics emerges. J Phys D Appl Phys 41(13)
  171. Pileni MP (2009) Self assembly of inorganic nanocrystals in 3D supra crystals: intrinsic properties. Surf Sci 603(10-12):1498-1505
  172. Pileni MP (2010) Inorganic nanocrystals self ordered in 2D superlattices: how versatile are the physical and chemical properties? Phys Chem Chem Phys 12(38):11821-11835
  173. Schmid G (2006) Nanoparticles: from theory to application. Wiley VCH, Weinheim 203. Enustun BV, Turkevich J (1963) Coagulation of colloidal gold. J Am Chem Soc 85:3317-3328
  174. Hutchings GJ, Brust M et al (2008) Gold-an introductory perspective. Chem Soc Rev 37(9):1759-1765
  175. Jolivet JP, Tronc E et al (2000) Synthesis of iron oxide-and metal-based nanomaterials. Eur Phys J Appl Phys 10:167-172
  176. Liz-Marzan LM (2004) Nanometals formation and color. Mater Today 7(2):26-31
  177. Perez-Juste J, Pastoriza-Santos I et al (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17-18):1870-1901
  178. Wang X, Zhuang J et al (2005) A general strategy for nanocrystal synthesis. Nature 437:121-124
  179. Liao H, Nehl CL et al (2006) Biomedical applications of plasmon resonant metal nanoparti- cles. Nanomedicine 1(2):201-208
  180. Jain PK, Huang X et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578-1586
  181. Mudring A-V, Alammar T et al (2009) Nanoparticle synthesis in ionic liquids. ACS Symp Ser 1030:177-188
  182. Pastoriza-Santos I, Alvarez-Puebla RA et al (2010) Synthetic routes and plasmonic properties of noble metal nanoplates. Eur J Inorg Chem 27:4288-4297
  183. Zeng H, Du X-W et al (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333-1353
  184. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotech- nology. Chem Rev 104:293-346
  185. Pasquato L, Pengo P et al (2004) Functional gold nanoparticles for recognition and catalysis. J Mater Chem 14(24):3481-3487
  186. Guarise C, Pasquato L et al (2005) Reversible aggregation/deaggregation of gold nanoparti- cles induced by a cleavable dithiol linker. Langmuir 21(12):5537-5541
  187. Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drug Deliv 11(5):741-752
  188. Özgür Ü, Alivov YI et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):1-103
  189. Morkoç H, Özgür Ü (2008) Zinc oxide: materials preparation, properties, and devices. Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim
  190. Morkoç H, Özgür Ü (2009) Zinc oxide: fundamentals materials and device technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  191. Hilgendorff M, Spanhel L et al (1998) From ZnO colloids to nanocrystalline highly conduc- tive fi lms. J Electrochem Soc 145(10):3632-3637
  192. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B Solid 80(1-3):383-387
  193. Cozzoli PD, Kornowski A et al (2005) Colloidal synthesis of organic-capped ZnO nanocrys- tals via a sequential reduction-oxidation reaction. J Phys Chem B 109(7):2638-2644
  194. Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5(10):1561-1573
  195. Klingshirn C, Hauschild R et al (2005) ZnO rediscovered-once again!? Superlattices Microstruct 38(4-6):209-222
  196. Buha J, Djerdj I et al (2006) Nonaqueous synthesis of nanocrystalline indium oxide and zinc oxide in the oxygen-free solvent acetonitrile. Cryst Growth Des 7(1):113-116
  197. Dem'yanets L, Li L et al (2006) Zinc oxide: hydrothermal growth of nano-and bulk crystals and their luminescent properties. J Mater Sci 41(5):1439-1444
  198. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8-9):944-961
  199. Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol Gel Sci Technol 39(1):7-24
  200. Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027-3073
  201. Klingshirn C (2007) ZnO: material, physics and applications. ChemPhysChem 8(6):782-803
  202. Ellmer K, Klein A (2008) ZnO and its applications. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide, vol 104. Springer, Berlin/Heidelberg, pp 1-33
  203. Anderson J, Chris GVW (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72(12):126501
  204. Ahmad M, Zhu J (2011) ZnO based advanced functional nanostructures: synthesis, properties and applications. J Mater Chem 21(3):599-614
  205. Gomez J, Tigli O (2013) Zinc oxide nanostructures: from growth to application. J Mater Sci 48(2):612-624
  206. Ludi B, Niederberger M (2013) Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization. Dalton Trans 42(35):12554-12568
  207. Wahab R, Khan F et al (2013) Hydrogen adsorption properties of nano-and microstructures of ZnO. J Nanomater 542753
  208. Famengo A, Anantharaman S et al (2009) Facile and reproducible synthesis of nanostruc- tured colloidal ZnO nanoparticles from zinc acetylacetonate: effect of experimental parame- ters and mechanistic investigations. Eur J Inorg Chem 33:5017-5028
  209. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113(8):2826-2833
  210. Niederberger M, Garnweitner G et al (2006) Non-aqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications. Prog Solid State Chem 33:59-70
  211. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nano- structures. Angew Chem Int Ed 47:5292-5304
  212. Franzmann E, Khalil F et al (2011) A biomimetic principle for the chemical modifi cation of metal surfaces: synthesis of tripodal catecholates as analogues of siderophores and mussel adhesion proteins. Chemistry Eur. J (Chemistry-A European Journal) 17(31):8596-8603
  213. Khalil F, Franzmann E et al (2014) Biomimetic PEG-catecholates for stabile antifouling coat- ings on metal surfaces: applications on TiO 2 and stainless steel. Colloids Surf B Biointerfaces 117:185-192
  214. Maison W, Khalil F et al. Synthesis of tripodal bisphosphonate derivatives with an adamantyl base for functionalising surfaces Patent number: EP 2428517 B1 20131106 (DE) Univ Giessen, Justus-Liebig, Germany
  215. Maison W, Khalil F et al. Synthesis of tripodal catechol derivatives with a fl exible base for functionalising surfaces Patent number: EP 2428503 B1 20141210 (DE) Univ Giessen, Justus-Liebig, Germany
  216. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles J Am Chem Soc 126:9938-9939
  217. Ye Q, Zhou F et al (2011) Bioinspired catecholic chemistry for surface modifi cation Chem Soc Rev 7:4244-4258
  218. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648-8649
  219. Pastoriza-Santos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2(8):903-905
  220. Murphy CJ, Sau TK et al (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30(5):349-355
  221. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic inter- face. Nature 437:664-670 (London, U. K.)
  222. Jiang XC, Pileni MP (2007) Gold nanorods: infl uence of various parameters as seeds, sol- vent, surfactant on shape control. Colloids Surf 295(1-3):228-232
  223. Nelayah J, Kociak M et al (2007) Mapping surface plasmons on a single metallic nanoparti- cle. Nat Phys 3(5):348-353
  224. Lu X, Rycenga M et al (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167-192
  225. Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41(1):242-257
  226. Klinkova A, Choueiri RM et al (2014) Self-assembled plasmonic nanostructures. Chem Soc Rev 43(11):3976-3991
  227. Caswell KK, Bender CM et al (2003) Seedless, surfactantless wet chemical synthesis of sil- ver nanowires. Nano Lett 3(5):667-669
  228. Li J, Chen Z et al (1999) Low temperature route towards new materials: solvothermal synthe- sis of metal chalcogenides in ethylenediamine. Coord Chem Rev 190-192:707-735 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
  229. Gautam UK, Ghosh M et al (2002) Solvothermal routes to capped oxide and chalcogenide nanoparticles. Pure Appl Chem 74:1643-1649 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
  230. Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222-234
  231. Sokolov MN, Abramov PA (2012) Chalcogenide clusters of groups 8-10 noble metals. Coord Chem Rev 256(17-18):1972-1991
  232. Tolia J, Chakraborty M et al (2012) Synthesis and characterization of semiconductor metal sulfi de nanocrystals using microemulsion technique. Cryst Res Technol 47(8):909-916
  233. Armelao L, Camozzo D et al (2006) Synthesis of copper sulphide nanoparticles in carboxylic acids as solvent. J Nanosci Nanotechnol 6(2):401-408
  234. Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfi de fi lms of variable composition. J Solid State Chem 114(2):469-475
  235. Grijalva H, Inoue M et al (1996) Amorphous and crystalline copper sulfi des, CuS. J Mater Chem 6(7):1157-1160
  236. Raevskaya AE, Stroyuk AL et al (2004) Catalytic activity of CuS nanoparticles in hydrosul- fi de ions air oxidation. J Mol Catal A Chem 212(1-2):259-265
  237. Basu M, Sinha AK et al (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44(16):6313-6318
  238. Goel S, Chen F et al (2014) Synthesis and biomedical applications of copper sulfi de nanopar- ticles: from sensors to theranostics. Small 10(4):631-645
  239. Prince LM (1977) Microemulsions: theory and practice. Academic, New York
  240. Landfester K, Bechthold N et al (1999) Formulation and stability mechanisms of polymeriz- able miniemulsions. Macromolecules 32(16):5222-5228
  241. Aserin A (2008) Multiple emulsion: technology and applications. Wiley, New York
  242. Tovstun SA, Razumov VF (2011) Preparation of nanoparticles in reverse microemulsions. Russ Chem Rev 80(10):953-969
  243. Tadros TF (2014) An introduction to surfactants. Walter de Gruyter, Berlin
  244. Bechthold N, Tiarks F et al (2000) Miniemulsion polymerization: applications and new mate- rials. Macromol Symp 151:549-555
  245. Landfester K (2000) Recent developments in miniemulsions-formation and stability mech- anisms. Macromol Symp 150:171-178
  246. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27(4):689-757
  247. Landfester K (2003) Miniemulsions for nanoparticle synthesis. In: Antonietti M (ed) Colloid chemistry II. Springer, Berlin/Heidelberg, pp 75-123
  248. Landfester K (2003) Miniemulsions for nanoparticle synthesis. Top Curr Chem 227:75-123
  249. Landfester K (2005) Designing particles: miniemulsion technology and its application in functional coating systems. Eur Coating J 20-22:24-25
  250. Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212-224
  251. Muñoz-Espí R, Weiss CK et al (2012) Inorganic nanoparticles prepared in miniemulsion. Curr Opin Colloid Interface Sci 17(4):212-224
  252. Cao Z, Ziener U (2013) Synthesis of nanostructured materials in inverse miniemulsions and their applications. Nanoscale 5(21):10093-10107
  253. Landfester K, Antonietti M 2004 Miniemulsions for the convenient synthesis of organic and inorganic nanoparticles and "single molecule" applications in materials chemistry. F. Caruso (ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG
  254. Landfester K, Tiarks F et al (2000) Polyaddition in miniemulsions. A new route to polymer dispersions. Macromol Chem Phys 201:1-5
  255. Landfester K, Willert M et al (2000) Preparation of polymer particles in nonaqueous direct and inverse miniemulsions. Macromolecules 33(7):2370-2376
  256. Weiss CK, Ziener U et al (2007) A route to nonfunctionalized and functionalized poly(n- butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules 40(4):928-938
  257. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488-4507
  258. Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the syn- thesis of functionalized polymers. Beilstein J Org Chem 6:1132-1148
  259. Landfester K, Weiss CK (2010) Encapsulation by miniemulsion polymerization. Adv Polym Sci 229:1-49
  260. Willert M, Rothe R et al (2001) Synthesis of inorganic and metallic nanoparticles by miniemulsifi cation of molten salts and metals. Chem Mater 13(12):4681-4685
  261. Peng B, Chen M et al (2008) Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J Colloid Interface Sci 321(1):67-73
  262. Musyanovych A, Landfester K (2007) Core-shell particles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  263. Caruso F, Spasova M et al (2001) Multilayer assemblies of silica-encapsulated gold nanopar- ticles on decomposable colloid templates. Adv Mater 13(14):1090-1095
  264. Hajir M, Dolcet P et al (2012) Sol-gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. J Mater Chem 22(12):5622-5628
  265. Pinna N, Weiss K et al (2001) Triangular CdS nanocrystals: synthesis, characterization, and stability. Langmuir 17(26):7982-7987
  266. Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97(27):6961-6973
  267. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2(3):145-150
  268. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115(10):3887-3896
  269. Lisiecki I, Pileni MP (1995) Copper metallic particles synthesized in-situ in reverse micelles-infl uence of various parameters on the size of the particles. J Physa Chem 99(14):5077-5082
  270. Maillard M, Giorgio S et al (2002) Silver nanodisks. Adv Mater 14(15):1084-1086
  271. Pinna N, Maillard M et al (2002) Optical properties of silver nanocrystals self-organized in a two-dimensional superlattice: Substrate effect. Phys Rev B 66(4)
  272. Maillard M, Giorgio S et al (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107(11):2466-2470
  273. Mishra S, Daniele S et al (2007) Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chem Soc Rev 36:1770-1787 (Copyright (C) 2014 American Chemical Society (ACS).
  274. Carpenter EE, Sims JA et al (2000) Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J Appl Phys 87(9):5615-5617
  275. Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mech- anisms and growth control. Curr Opin Colloid Interface Sci 8(2):137-144
  276. Lopez-Quintela MA, Tojo C et al (2004) Microemulsion dynamics and reactions in micro- emulsions. Curr Opin Colloid Interface Sci 9(3-4):264-278
  277. Dolcet P, Casarin M et al (2012) Miniemulsions as chemical nanoreactors for the room tem- perature synthesis of inorganic crystalline nanostructures: ZnO colloids. J Mater Chem 22:1620-1626 (Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.)
  278. Dolcet P, Latini F et al (2013) Inorganic chemistry in a nanoreactor: doped ZnO nanostruc- tures by miniemulsion. Eur J Inorg Chem 2013(13):2291-2300
  279. Butturini E, Dolcet P et al (2014) Simple, common but functional: biocompatible and lumi- nescent rare-earth doped magnesium and calcium hydroxides from miniemulsion. J Mater Chem 2:6639-6651
  280. Taden A, Antonietti M et al (2004) Inorganic fi lms from three different phosphors via a liquid coating route from inverse miniemulsions. Chem Mater 16(24):5081-5087
  281. Nabih N, Schiller R et al (2011) Mesoporous CeO 2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology 22(13):135606
  282. Rossmanith R, Weiss CK et al (2008) Porous anatase nanoparticles with high specifi c surface area prepared by miniemulsion technique. Chem Mater 20:5768-5780
  283. Kubiak P, Froeschl T et al (2011) TiO 2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. Small 7:1690-1696
  284. Heutz NA, Dolcet P et al (2013) Inorganic chemistry in a nanoreactor: Au/TiO2 nanocompos- ites by photolysis of a single-source precursor in miniemulsion. Nanoscale 5:10534-10541
  285. Rohe M, Löffl er E et al (2008) A gold-containing TiO complex: a crystalline molecular pre- cursor as an alternative route to Au/TiO 2 composites. Dalton Trans 864(44):6106-6109 References
  286. Khan MA, Williams RL, Williams DF (1996) In vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17:2117-2126
  287. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11-21
  288. Khan MA, Williams RL, Williams DF (1999) Conjoint corrosion and wear in titanium alloys. Biomaterials 20:765-772
  289. McKay GC, Macnair R, MacDonald C, Grant MH (1996) Interactions of orthopaedic metals with an immortalized rat osteoblast cell line. Biomaterials 17:1339-1344
  290. Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, Breme J, Hildebrand H (2002) Interactions between cells and titanium surfaces. Biomol Eng 19:243-249
  291. Hanawa T (2002) Evaluation techniques of metallic biomaterials in vitro. Sci Tech Adv Mater 3:289-295
  292. Dearnley PA, Dahm KL, Çimenoğlu H (2004) The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V. Wear 256:469-479
  293. Barril S, Debaud S, Mischler S, Landolt D (2002) A tribo-electrochemical apparatus for in vitro investigation of fretting-corrosion of metallic implant materials. Wear 252:744-754
  294. Ponthiaux P, Wenger F, Drees D, Celis JP (2004) Electrochemical techniques for studying tri- bocorrosion processes. Wear 256:459-468
  295. Okazaki Y (2002) Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials 23:2071-2077
  296. Duisabeau L, Combrade P, Forest B (2004) Environmental effect on fretting of metallic materi- als for orthopaedic implants. Wear 256:805-816
  297. Vieira AC, Ribeiro AR, Rocha LA, Celis JP (2006) Influence of pH and corrosion inhibitors on the tribocorrosion of titanium in artificial saliva. Wear 261:994-1001
  298. Barril S, Mischler S, Landolt D (2004) Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt% sodium chloride solution. Wear 256:963-972
  299. Barril S, Mischler S, Landolt D (2005) Electrochemical effects on the fretting corrosion behav- iour of Ti6Al4V in 0.9 % sodium chloride solution. Wear 259:282-291
  300. Duerig T, Pelton A, Stockel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 149:273-275
  301. Narayan R (2009) Biomedical materials. Springer, New York
  302. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge
  303. Ashby MF, Ferreira PJ, Schodek DL (eds) (2009) Chapter 11: nanomaterials and nanotech- nologies in health and the environment, Nanomaterials, nanotechnologies and design: an intro- duction for engineers and architects. Elsevier Butterworth-Heinemann, Burlington, MA, pp 467-500
  304. Van Hove MA (2009) Atomic-scale structure: from surface to nanomaterials. Surf Sci 603:1301-1305
  305. Zäch M, Hägglund C, Chakarov D, Kasemo B (2006) Nanoscience and nanotechnology for advanced energy systems. Curr Opin Solid State Mater Sci 10:132-143
  306. Balasundaram G, Webster TJ (2006) A perspective on nanophase materials for orthopedic implant applications. J Mater Chem 16:3737-3745
  307. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135-1138
  308. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interac- tions by adsorbed proteins: a review. Tissue Eng 11(1-2):1-18
  309. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731-4739
  310. Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on for- mulations containing carbon nanofibers. Biomaterials 24:1877-1887
  311. Webster TJ, Smith TA (2005) Increased osteoblast function on PLGA composites containing nanophase titania. J Biomed Mater Res Part A 74:677-686. doi:10.1002/jbm.a.30358
  312. Manjubala I, Scheler S, Bossert J, Jandt KD (2006) Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomaterilia 2(1):75-84
  313. Aizenberg J (2005) A bio-inspired approach to controlled crystallization at the nanoscale. Bell Labs Tech J 10(3):129-141
  314. Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica 77:213-225. doi:10.1111/j.1463-6395.1996. tb01265.x
  315. Lee W, Jin MK, Yoo WC, Lee JK (2004) Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20(18): 7665-7669
  316. Valiev RZ (2004) Nanostructuring of metals by severe plastic deformation for advanced prop- erties. Nat Mater 3:511-516
  317. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M (2007) Cellular and molecu- lar interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials 28:3887-3895
  318. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: funda- mentals and applications. Progr Mater Sci 53:893-979
  319. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Progr Mater Sci 45(2):103-189
  320. Minárik P, Král R, Janeček M (2013) Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl Surf Sci 281:44-48
  321. Suresh KS, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, Asokamani R (2012) Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid. Mater Sci Eng C 32:763-771
  322. Li SY, Beyerlein IJ, Bourke MAM (2005) Texture formation during equal channel angular extrusion of fcc and bcc materials: comparison with simple shear. Mater Sci Eng A 394(1-2):66-77
  323. Ahna SH, Chunb YB, Yuc SH, Kima KH, Hwang SK (2010) Microstructural refinement and deformation mode of Ti under cryogenic channel die compression. Mater Sci Eng A 528: 165-171
  324. Rosen GI, Jensen DJ, Hughes DA, Hansen N (1995) Microstructure and local crystallography of cold rolled aluminum. Acta Metallurgica Materialia 43(7):2563-2579
  325. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mecha- nisms. Acta Materialia 45(9):3871-3886
  326. Park JH, Olivares-Navarrete R, Baier RE, Meyer AE, Tannenbaum R, Boyan BD, Schwartz Z (2012) Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomaterialia 8(5):1966-1975
  327. Guo ZX, Wang XL, Huang H (2010) Plasma-mediated ablation of biofilm contamination. Appl Surf Sci 257(4):1247-1253
  328. Cooper LF, Zhou YS, Takebe J, Guo JL, Abron A, Holmén A, Ellingsen JE (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO 2 grit-blasted c.p. tita- nium endosseous implants. Biomaterials 27(6):926-936
  329. Peutzfeld A, Asmussen E (1996) Distortion of alloy by sandblasting. Am J Dent 9:65-66
  330. Multigner M, Ferreira-Barragáns S, Frutos E, Jaafar M, Ibáñez J, Marín P, Pérez-Prado MT, González-Doncel G, Asenjo A, González-Carrasco JL (2010) Superficial severe plastic defor- mation of 316 LVM stainless steel through grit blasting: effects on its microstructure and subsurface mechanical properties. Surf Coating Tech 205(7):1830-1837
  331. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behaviour of com- mercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 24(2):263-273
  332. Hashemi B, Yazdi MR, Azar V (2011) The wear and corrosion resistance of shot peened- nitrided 316L austenitic stainless steel. Mater Des 32:3287-3292
  333. Sealy MP, Guo YB (2010) Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. J Mech Behav Biomed Mater 3:488-496
  334. Cao Z, Jiang H, Luo H, Baumann S, Meulenberg WA, Assmann J, Mleczko L, Liu Y, Caro J (2013) Natural gas to fuels and chemicals: improved methane aromatization in an oxygen- permeable membrane reactor. Angew Chem Int Ed 52:13794-13797
  335. Luo H, Efi mov K, Jiang H, Feldhoff A, Wang H, Caro J (2011) CO 2 -stable and cobalt-free dual-phase membrane for oxygen separation. Angew Chem Int Ed 50:759-763
  336. Climent MJ, Corma A, Iborra S (2014) Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem 16:516-547
  337. Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375-2378
  338. Cao Z, Jiang H, Luo H, Baumann S, Meulenberg WA, Voss H, Caro J (2012) Simultaneous overcome of the equilibrium limitations in BSCF oxygen-permeable membrane reactors: water splitting and methane coupling. Catal Today 193:2-7
  339. Geilen F, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and fl exible transformation of biomass-derived platform chemicals by a multifunc- tional catalytic system. Angew Chem Int Ed 49:5510-5514
  340. Geilen FMA, vom Stein T, Engendahl B, Winterle S, Liauw MA, Klankermayer J, Leitner W (2011) Highly selective decarbonylation of 5-(hydroxymethyl)furfural in the presence of compressed carbon dioxide. Angew Chem Int Ed 50:6831-6834
  341. vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, Domínguez de Maria P (2010) Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem 12: 1844-1849 K. Yan and H. Luo
  342. Yan K, Wu G, Lafl eur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663-676
  343. Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for pro- duction of hydrogen and alkanes in a biorefi nery. Catal Today 111:119-132
  344. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044-4098
  345. Yan K, Wu X, An X, Xie X (2013) Facile synthesis of reusable CoAlhydrotalcite catalyst for dehydration of biomass-derived fructose into platform chemical 5-hydroxymethylfurfural. Chem Eng Commun 201:456-465
  346. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass volume I-results of screening for potential candidates from sugars and synthesis Gas. No. DOE/GO-102004-1992. Department of Energy Washington DC
  347. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal Gen 385:1-13
  348. Qiao Y, Li H, Hua L, Orzechowski L, Yan K, Feng B, Pan Z, Theyssen N, Leitner W, Hou Z (2012) Peroxometalates immobilized on magnetically recoverable catalysts for epoxidation. ChemPlusChem 77:1128-1138
  349. Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing condi- tions. Journal of Molecular Catalysis A: J Mol Catal A Chem 198:317-341
  350. Yan K, Chen A (2013) Environmentally benign NiAlCe-hydrotalcite for effi cient synthesis of benzoin ethyl ether. Environ Chem Lett 11:171-175
  351. Yan K, Liao J, Wu X, Xie X (2013) Facile synthesis of eco-friendly Cu-hydrotalcite catalysts for highly selective synthesis of furfural diethyl acetal and benzoin ethyl ether. Adv Mater Lett 4:702
  352. Yan K, Wu G, Jarvis C, Wen J, Chen A (2014) Facile synthesis of porous microspheres com- posed of TiO 2 nanorods with high photocatalytic activity for hydrogen production. Appl Catal Environ 148-149:281-287
  353. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2:18-45
  354. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099-8139
  355. Yan K, Chen A (2013) Effi cient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst. Energy 58:357-363
  356. Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst. Fuel 115:101-108
  357. Cangül B, Zhang LC, Aindow M, Erkey C (2009) Preparation of carbon black supported Pd, Pt and Pd-Pt nanoparticles using supercritical CO 2 deposition. J Supercrit Fluid 50:82-90
  358. Campbell CT, Parker SC, Starr DE (2002) The effect of size-dependent nanoparticle energet- ics on catalyst sintering. Science 298:811-814
  359. Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S (2012) Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv 2:11184-11206
  360. West RM, Kunkes EL, Simonetti DA, Dumesic JA (2009) Catalytic conversion of biomass- derived carbohydrates to fuels and chemicals by formation and upgrading of mono-functional hydrocarbon intermediates. Catal Today 147:115-125
  361. Yan K, Jarvis C, Lafl eur T, Qiao Y, Xie X (2013) Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic perfor- mance. RSC Adv 3:25865-25871
  362. Jin T, Guo S, Zuo J-l, Sun S (2013) Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale 5:160-163
  363. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577-5587
  364. Hou Z, Theyssen N, Brinkmann A, Leitner W (2005) Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed 117:1370-1373
  365. Hou Z, Theyssen N, Leitner W (2007) Palladium nanoparticles stabilised on PEG-modifi ed silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem 9:127-132
  366. Astruc EBD (ed) (2008) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  367. Barau A, Budarin V, Caragheorgheopol A, Luque R, Macquarrie D, Prelle A, Teodorescu V, Zaharescu M (2008) A simple and effi cient route to active and dispersed silica supported pal- ladium nanoparticles. Catal Lett 124:204-214
  368. Campbell CT (2013) The energetics of supported metal nanoparticles: relationships to sinter- ing rates and catalytic activity. Acc Chem Res 46:1712-1719
  369. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, proper- ties, and applications. Chem Rev 110:3767-3804
  370. Bavykin D, Lapkin A, Plucinski P, Torrente-Murciano L, Friedrich J, Walsh F (2006) Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Top Catal 39:151-160
  371. Chen M, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin fi lms. Acc Chem Res 39:739-746
  372. Diao P, Guo M, Zhang Q (2008) How does the particle density affect the electrochemical behavior of gold nanoparticle assembly? J Phys Chem C 112:7036-7046
  373. Liu Y, Jia C-J, Yamasaki J, Terasaki O, Schüth F (2010) Highly active iron oxide supported gold catalysts for CO oxidation: how small must the gold nanoparticles be? Angew Chem Int Ed 49:5771-5775
  374. Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured mate- rials. Appl Catal Gen 356:1-17
  375. Cavani F, Trifi rò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173-301
  376. Clause O, Rebours B, Merlen E, Trifi ró F, Vaccari A (1992) Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors. J Catal 133:231-246
  377. Xie X, Yan K, Li J, Wang Z (2008) Effi cient synthesis of benzoin methyl ether catalyzed by hydrotalcite containing cobalt. Catal Commun 9:1128-1131
  378. Yan K, Xie X, Li J, Wang X, Wang Z (2007) Preparation, characterization, and catalytical application of MgCoAl-hydrotalcite-like compounds. J Nat Gas Chem 16:371-376
  379. Yan K, Lafl eur T, Liao J, Xie X (2014) Highly selective one-pot synthesis of benzoin ether compounds on Ni-AlCe-hydrotalcite catalysts. Curr Catal 3:73-81
  380. Yan K, Wu X, An X, Xie X (2013) Novel preparation of nano-composite CuO-Cr 2 O 3 using Ctab-template method and effi cient for hydrogenation of biomass-derived furfural. Funct Mater Lett 06, 1350007
  381. Luo H, Jiang H, Klande T, Cao Z, Liang F, Wang H, Caro J (2012) Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0.6Sr0.4FeO3-δ-60Ce0.9Pr0.1O2-δ dual-phase mem- brane. Chem Mater 24:2148-2154
  382. Yan K, Wu X, An X, Xie X (2013) Facile synthesis and catalytic property of spinel ferrites by a template method. J Alloy Comp 552:405-408
  383. Xie X, An X, Yan K, Wu X, Song J, Wang Z (2010) A new way to synthesize benzoin isopro- pyl ether on Cu-Fe-hydrotalcite. J Nat Gas Chem 19:77-80
  384. Xie X, Yan K, Hu QX, Song JL,Wang Z (2008) Preparation and catalytic application of copper-containing hydrotalcite-like compounds. Chin J Inorg Chem 24:32-36
  385. Neri G, Rizzo G, De Luca L, Donato A, Musolino MG, Pietropaolo R (2009) Supported Pd catalysts for the hydrogenation of campholenic aldehyde: infl uence of support and prepara- tion method. Appl Catal Gen 356:113-120
  386. K. Yan and H. Luo
  387. Kim J, Kelly MJ, Lamb HH, Roberts GW, Kiserow DJ (2008) Characterization of palladium (Pd) on alumina catalysts prepared using liquid carbon dioxide. J Phys Chem C 112: 10446-10452
  388. Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161-4164
  389. Blackburn JM, Long DP, Cabanas A, Watkins JJ (2001) Deposition of conformal copper and nickel fi lms from supercritical carbon dioxide. Science 294:1-7
  390. Romang AH, Watkins JJ (2010) Supercritical fl uids for the fabrication of semiconductor devices: emerging or missed opportunities? Chem Rev 110:459-478
  391. Bozbag SE, Yasar NS, Zhang LC, Aindow M, Erkey C (2011) Adsorption of Pt(cod)me2 onto organic aerogels from supercritical solutions for the synthesis of supported platinum nanopar- ticles. J Supercrit Fluid 56:105-113
  392. Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fl uids: a review. J Supercrit Fluid 38:252-267
  393. Zhang Y, Kang D, Aindow M, Erkey C (2005) Preparation and characterization of ruthenium/ carbon aerogel nanocomposites via a supercritical fl uid route. J Phys Chem B 109: 2617-2624
  394. Yan K, Lafl eur T, Wu G, Liao J, Ceng C, Xie X (2013) Highly selective production of value- added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl Catal Gen 468:52-58
  395. Yen CH, Shimizu K, Lin Y-Y, Bailey F, Cheng IF, Wai CM (2007) Chemical fl uid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy Fuel 21:2268-2271
  396. Kelly M, Kim J, Roberts G, Lamb H (2008) Characterization of Pd/γ-Al2O3 catalysts pre- pared using [Pd(hfac) 2 ] in liquid CO 2 . Top Catal 49:178-186
  397. Morère J, Tenorio MJ, Torralvo MJ, Pando C, Renuncio JAR, Cabañas A (2011) Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide. J Supercrit Fluid 56:213-222
  398. Yen CH, Lin HW, Phan TD, Tan CS (2011) Chemical fl uid deposition of monometallic and bimetallic nanoparticles on ordered mesoporous silica as hydrogenation catalysts. J Nanosci Nanotechnol 11:2465-2469
  399. Yan K, Lafl eur T, Liao J, Xie X (2014) Facile green synthesis of palladium nanoparticles for effi cient liquid-phase hydrogenation of biomass-derived furfural. Sci Adv Mater 6:135-140
  400. Rylander P (2012) Catalytic hydrogenation over platinum metals. Elsevier, Amsterdam
  401. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110-1114
  402. Xinghua Z, Tiejun W, Longlong M, Chuangzhi W (2010) Aqueous-phase catalytic process for production of pentane from furfural over nickel-based catalysts. Fuel 89:2697-2702
  403. Gao Y, Wang X-H, Yang H-P, Chen H-P (2012) Characterization of products from hydrother- mal treatments of cellulose. Energy 42:457-465
  404. Kruse A, Funke A, Titirici MM (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17:515-521
  405. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328-2342
  406. Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15:1615-1624
  407. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel 89:2873-2880
  408. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) [gamma]-Valerolactone-a sustain- able liquid for energy and carbon-based chemicals. Green Chem 10:238-242
  409. Fabos V, Koczo G, Mehdi H, Boda L, Horvath IT (2009) Bio-oxygenates and the peroxide number: a safety issue alert. Energ Environ Sci 2:767-769
  410. Logothetidis S (ed) Nanostructured materials and their applications. NanoScience and Technology. Springer-Verlag Berlin Heidelberg 2012. doi: 10.1007/978-3-642-22227-6_1
  411. Schmid G (1992) Chem Rev 92:1709-1727
  412. Hoffman AJ, Mills G, Yee H, Hoffmann M (1992) J Phys Chem 96:5546-5552
  413. Colvin VL, Schlamp MC, Alivisatos A (1994) Nature 370:354-357
  414. Wang Y, Herron N (1991) J Phys Chem 95:525-532
  415. Mansur HS, Grieser F, Marychurch MS, Biggs S, Urquhart RS, Furlong D (1995) J Chem Soc Faraday Trans 91:665-672
  416. Wang Y (1991) Acc Chem Res 24:133-139
  417. Yoffe A (1993) Adv Phys 42:173-266
  418. Tan M, Wang G, Ye Z, Yuan J (2006) Lumin 117:20-28
  419. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) J Nucl Med 49:1371-1379
  420. Pissuwan D, Valenzuela SM, Cortie MB (2006) Trends Biotechnol 24:62-67
  421. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) J Nanopart Res 6:411-414
  422. Cai W, Gao T, Hong H, Sun J (2008) Nanotechnol Sci Appl 1:17-32
  423. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896-1908
  424. Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) J Am Chem Soc 130:2780-2782
  425. Tang D, Yuan R, Chai Y (2007) Biosens Bioelectron 22:1116-1120
  426. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Anal Chem 80: 1067-1072
  427. Nagajyothi PC, Lee KD, Sreekanth TVM (2014) Synth React Inorg Metal-Org Nano-Metal Chem 4:1011-1018
  428. Tetty CO, Nagajyothi PC, Lee SE, Ocloo A, Minh An TN, Sreekanth TVM, Lee KD (2012) Int J Cosm Sci 34:150-154
  429. Sreekanth TVM, Nagajyothi PC, Lee KD (2012) Adv Sci Lett 6:63-69
  430. Nagajyothi PC, Sreekanth TVM, Prasad TNVKV, Lee KD (2012) Adv Sci Lett 5:124-130
  431. Tseng WL, Huang MF, Huang YF, Chang HT (2005) Electrophoresis 26:3069-3075
  432. Kotthaus S, Gunther BH, Hang R, Schafer H (1997) IEEE Trans Compon Packag Manuf Technol Part A 20:15-20
  433. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London
  434. Zhang W, Wang G (2003) New Chem Mater 31:42-44
  435. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Colloids Surf B 76:50-56
  436. Elumalai EK, Prasad TNVKV, Hemachandran J, Viviyan Therasa S, Thirumalai T, David E (2010) J Pharm Sci Res 2:549-554
  437. Nagajyothi PC, Sreekanth TVM, Jae-il Lee, Kap Duk Lee (2014) J Photochem Photobiol B Biol 130:299-304
  438. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Trends Biotechnol 19:15-20
  439. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI (2001) Nano Lett 1:515-519
  440. Thakkar KN, Mhatre SS, Parikh RY (2010) Nanomed Nanotechnol Biol Med 6:257-262
  441. Dura'n N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) J Biomed Nanotechnol 3:203-208
  442. Adlim M, Bakar MA, Liew KY, Ismail J (2004) J Mol Catal A 212:141-149
  443. Chakraborty S, Raj CR (2009) Biosens Bioelectron 24:3264-3268
  444. Venu R, Ramalu TS, Znandakumar S, Rani VS, Kim CG (2011) Colloids Surf A 384: 733-738
  445. Lin X, Wu M, Kuga S, Endo T, Huang Y (2011) Green Chem 13:283-287
  446. Čechalova V, Kalendova A (2007) J Phys Chem Solids 68:1096-1100
  447. Nagajyothi PC, Sreekanth TVM, Tettey CO, Yang In June, Shin Heung Mook (2014) Bioorg Med Chem Lett 24:4298-4303
  448. Mittal AK, Chisti Y, Banerjee UB (2013) Biotechnol Adv 31:346-356
  449. Suliman AE, Tang Y, Xu L (2007) Sol Energy Mater Sol Cell 91:1658-1662
  450. Parida KM, Dash SS, Das DP (2006) J Colloid Interface Sci 298:787-793
  451. Gao T, Wang TH (2005) Appl Phys A 80:1451-1454
  452. Gardea-Torresdey JL, Parsons JG, Dokken K, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M (2002) Nano Lett 2:397-401
  453. P.C. Nagajyothi and T.V.M. Sreekanth nath_debjani@yahoo.co.in
  454. Gardea-Torresdey JL, Gomez E, Peralta-Videa J, Parsons JG, Troiani HE, Jose Yacaman M (2003) Langmuir 19:1357-1361
  455. Nagajyoyhi PC, Sreekanth TVM, Lee KD (2012) Synt React Inorg Metal-Org Nano-Metal Chem 42:1339-1344
  456. Akhtar MS, Panwar J, Yun Y-S (2013) ACS Sustain Chem Eng 1:591-602
  457. Sathishkumar M, Krishnamurthy S, Yun YS (2010) Biores Technol 101:7958-7965
  458. Divya MJ, Sowmia C, Joona K, Dhanya KP (2013) Res J Pharm Biol Chem Sci 4:1137-1142
  459. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Spectrochim Acta Part A Mol Biomol Spectros 137:886-891
  460. Vanathi P, Rajiv P, Narendhran S, Rajeshwari S, Rahman KSM, Venckatesh R (2014) Mat Lett 134:13-15
  461. Sreekanth TVM, Kap Duk Lee (2013) Curr Nanosci 9:457-462
  462. Singh A, Jain D, Upadhyay MK, Khandelwal N, Verma HN (2010) Dig J Nanomater Biostruct 5:483-489
  463. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE (2010) Langmuir 27:264-271
  464. Saxena A, Tripathi RM, Singh RP (2010) Dig J Nanomater Biostruct 5:427-432
  465. Bipinchandra KS, Shin J, Shailesh SS, Alkotaini B, Lee S, Kim BS (2014) Korean J Chem Eng 31:2035-2040
  466. Sreekanth TVM, Ravikumar S, Eom IY (2014) J Photochem Photobiol B Biol 141:100-105
  467. Priya B, Mantosh S, Aniruddha M, Papita D (2014) Bioresou Bioprocess 1:1-10
  468. Sharma G, Jasuja ND, Rajgovind, Singhal P, Josh SC (2014) J Microb Biochem Technol 6:1-3
  469. Umoren SA, Obot IB, Gase ZM (2014) J Mater Environ Sci 5:907-914
  470. Velmurugan P, Krishnan A, Manoharan M, Kui-Jae L, Min Cho, Sang-Myeong L, Jung-Hee P, Sae-Gang Oh, Keuk-Soo Bang, Byung-Taek Oh (2014) Bioproc Biosyst Eng 37: 1935-1943
  471. Manal AA, Awatif Hendi A, Khalid Ortashi MO, Dalia Elradi FA, Nada Eisa E, Lamia A, Al-lahieb M, Shorog, Al-Otiby, Nada M, Merghani, Abdelelah Awad AG (2014) Int J Phys Sci 9:34-40
  472. Shivakumar PS, Vidyasagar GM (2014) Int J Green Chem Bioprocess 4:1-5
  473. Saikia D (2014) Int J Latest Res Sci Technol 3:132-135
  474. Umesh Kumar P, Nayak PL (2012) World J Nano Sci Technol 1:10-25
  475. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Nanotechnology 18:104-105
  476. Narayanan KB, Sakthivel N (2008) Mater Lett 62:4588-4590
  477. Ramezania N, Ehsanfara Z, Shamsab F, Aminc G, Shahverdid HR, Esfahanic HRM, Shamsaiea A, Bazazb RD, Shahverdi AR (2008) Z Naturforsch 63b:903-908
  478. Raghunandan D, Bedre D, Mahesh S, Basavaraja SD, Balaji SY, Manjunath Venkataraman A (2011) J Nanopart Res 13:2021-2028
  479. Balaprasad A (2010) E-J Chem 7:1334-1339
  480. Anuj Mishra N, Bhadauria S, Mulayam Gaur S, Pasricha R, Kushwah SB (2010) Int J Green Nanotechnol Phys Chem 1:118-124
  481. Thirumurugan A, Jifl in GJ, Rajagomathi G, Tomy NA, Ramachandran S, Jaiganesh R (2010) Int J Biol Technol 1:75-77
  482. Singh PP, Chittaranjan B (2012) Int J Sci Res 2:1-4
  483. Nellore J, Pauline PC, Amarnath K (2012) Dig J Nanomater Biostruct 7:123-133
  484. Badole MR, Dighe VV (2012) Int J Drug Disco Herb Res 2:275-278
  485. Aromal SA, Philip D (2012) Spectrochim Acta Part A Mol Biomol Spect 97:1-5
  486. Laura Castro M, Blázquez L, González F, Jesús A (2010) Chem Eng J 164:92-97
  487. Ratul Kumar D, Nayanmoni G, Utpal B (2011) Bioprocess Biosyst Eng 34:615-619
  488. Daizy P (2010) Spectrochimica Acta Part A 77:807-810
  489. Yi GC, Wang C, Park WI (2005) Semicond Sci Technol 20:22-34
  490. Senthil TS, Muthukumarasamy N, Misook Kang (2014) Bull Korean Chem Soc 35:1050-1056
  491. Nagajyothi PC, Minh An TN, Sreekanth TVM, Jae-il Lee, Dong Joo Lee, Lee KD (2013) Mater Lett 108:160-163
  492. Salam HA, Sivaraj R, Venckatesh R (2014) Mat Lett 131:16-18
  493. Senthilkumar SR, Sivakumar T (2014) Int J Pharm Pharm Sci 6:461-465
  494. Vimalaa K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Proc Biochem 49:160-172
  495. Gnanasangeetha D, SaralaThambavani D (2013) Res J Mater Sci 1:1-8
  496. Kumar B, Smita K, Cumbal L, Debut A (2014) Bioinorg Chem Appl Article ID 523869, 7 p 87. Bhumi G, Ratna Raju Y, Savithramma N (2014) Int J Drug Dev Res 6:97-104
  497. Awwad MA, Albiss B, Ahmad L (2014) Adv Mater Lett 5:520-524
  498. Gnanasangeetha D, Thambavani SD (2014) Int J Pharma Sci Res 5:2866-2873
  499. Liny P, Divya T, Barasa Malakar, Nagaraj B, Krishnamurthy NB, Dinesh R (2012) Int J Pharma Biosci 3:439-446
  500. Krishnamurthy N, Nagaraj B, Barasa Malakar, Liny P, Dinesh R (2012) Int J Pharma Biosci 3:212-221
  501. Burygin GL (2009) Nanoscale Res Lett 4:794-801
  502. Williams DN, Ehrman SH, Holoman TRP (2006) J Nanobiotechnol 4:1-8
  503. Huang WC, Tsai PJ, Chen YC (2007) Nanomedicine 2:777-787
  504. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Nano Lett 3:1261-1263
  505. Rosemary MJ, MacLaren I, Pradeep T (2006) Langmuir 22:10125-10129
  506. Grace NA, Pandian K (2007) Colloids Surf A Physicochem Eng Asp 297:63-70
  507. Rai A, Prabhune A, Perry CC (2010) J Mater Chem 20:6789-6798
  508. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) Water Res 42: 3066-3074
  509. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) J Hazard Mater 201:244-249
  510. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K (2010) Int J Nanomed 5:1085-1094
  511. Zawrah MF, Abd el-moez SI (2011) Life Sci 8:37-44
  512. Kateryna Kon, Mahendra Rai (2013) J Comp Clin Path Res 2:160-174
  513. Priya B, Satapathy M, Mukhopahayay A, Das P (2014) Bioresou Bioprocess 1:1-10
  514. Sondi I, Salopek-Sondi B (2004) J Colloid Interf Sci 275:177-182
  515. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanomed Nanotech Biol Med 3:95-101
  516. Murugan K, Senthilkumar B, Al-Sohaibani S (2014) Int J Nanomed 9:2431-2438
  517. Raffi n M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) J Mater Sci Technol 24:192-196
  518. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R (2008) J Phys Chem C 112:5825-5834
  519. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri J, Ramirez JT (2005) Nanotechnology 16:1353-2346
  520. Wang G, Shi C, Zhao N, Du X (2007) Mater Lett 61:3795-3797
  521. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) J Appl Microbiol 112:841-852
  522. Pal S, Tak YK, Song JM (2007) Appl Environ Microbiol 73:1712-1720
  523. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Nano Lett 6:866-870
  524. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Environ Sci Technol 40:6151-6156
  525. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C (2007) Appl Phys Lett 90: 2139021-2139023 P.C. Nagajyothi and T.V.M. Sreekanth nath_debjani@yahoo.co.in
  526. Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) J Nanopart Res 9:479-489
  527. Jayaseelan C, Abdul Rahuman A, Vishnu Kirthi A, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Bhaskara Rao KV (2012) Spectrocemica Acta Part A 90:78-84
  528. Mariappan P, Krishnamoorthy K, Kadarkaraithangam J, Govindasamy M (2011) Nanotechnol Biol Med 7:184-192
  529. Sawai JJ (2003) Microbiol Meth 54:177-182
  530. Yamamoto O (2001) Int J Inorg Mater 3:643-646
  531. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) J Appl Microbiol 107:1193-1201
  532. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2008) J Food Sci 74:M46-M52
  533. El-Batal AI, Hashem AA, Abdelbaky NM (2013) Springerplus 23:129-142
  534. Sreekanth TVM, Nagajyothi PC, Supraja N, Prasad TNVKV (2014) Appl Nano Sci DOI 10.1007/s13204-014-0354-x
  535. Lokina S, Narayanan V (2013) Chem Sci Trans 2(S1):S105-S110
  536. Kirubhan R, Alagumuthu G (2014) Int J Pharm 4:195-200
  537. Rajasekhar Reddy G, Jayakumar C, Morais AB, Sreenivasn D, Gandhi NN (2012) Int J Green Chem Bioprocess 2:1-5
  538. Jisha ER, Balamurugan G, Edison N, Selvakumar P, Rathiga R (2012) Int J Pharm Tech Res 4:1323-1331
  539. Nagaraj B, Divya TK, Malakar B, Krishnamurthy NB, Dinesha R, Negrila CC, Ciobanu CS, Iconaru SL (2012) Dig J Nanomater Biostr 7:899-905
  540. Mahitha B, Raju BDP, Madhavi T, Lakshmi CNDM, Sushma NJ (2013) Ind J Adv Chem Sci 1(2):94-98
  541. Nagaraj B, Barasa M, Divya TK, Krishnamurthy NB, Liny P, Dinesh R (2012) Int J Res 4:144-150
  542. Kirubha R, Alagumuthu G (2014) World J Pharm Sci 2(11):1469-1474
  543. Sharma G, Rajgovind NDJ, Suresh PS, Joshi C (2014) J Microbial Biochem Technol 6:274-278
  544. Prakash P, Gnaprakash R, Emmanuel R, Arokiyaraj M, Saravanan M (2013) Colloids Surf B Biointerf 108:255-259
  545. Manjunath Hullikere M, Joshi CG, Peethambar SK (2014) Res J Pharma Biol Chem Sci 5:395-401
  546. Sreekanth TVM, Nagajyothi PC, Supraja N, Prasad, TNVKV (2014) Appl Nanosci. doi: 10.1007/s13204-014-0354-x
  547. Smaranika D, Parida UK, Bindhani BK (2014) Int J Pharm Bio Sci 5:307-322
  548. Awwad AM, Salem NM, Abdeen AO (2013) Int J Indust Chem 4:1-6
  549. Mahitha B, Raju BDP, Dillip GR, Madhukar Reddy C, Mallikarjuna K, Manoj L, Priyanka S, Jayantha Rao K, John Sushma N (2011) Dig J Nanomater Biostr 6:135-142
  550. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) J Nanobiotechnol 12:1-9
  551. Shanmugavadivu M, Kuppusamy S, Ranjithkuma R (2014) AJADD 2:174-182
  552. Natarajan RK, Nayagam AAJ, Gunagarajan S, Ekambaram MN, Manimaran A (2013) World Appl Sci J 23:1314-1321
  553. Sangeetha G, Rajeshwari S, Rajendranb V (2012) Mater Int 22:693-700
  554. Ramesh M, Anbuvannan M, Viruthagir G (2014) Spectrochimica Acta Part A Mol Biomol Spectros. doi: 10.1016/j.saa.2014.09.105
  555. Ayeshamariam A, Kashif M, Vidhya VS, Sankaracharyulu MGV, Swaminathan V, Bououdina M, Jayachandran M (2014) J Optoelect Biomed Mater 6:85-99
  556. Adam D (2003) Microwave chemistry: out of the kitchen. Nature 421:571-572
  557. Ma MG, Zhu JF, Zhu YJ, Sun RC (2014) The microwave-assisted ionic-liquid method: a prom- ising methodology in nanomaterials. Chem Asian J 9:2378-2391
  558. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462-6555
  559. Vollmer C, Redel E, Abu-Shandi K, Thomann R, Manyar H, Hardacre C, Janiak C (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as bipha- sic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Chem Eur J 16:3849-3858
  560. Pradhan M, Sarkar S, Sinha AK, Basu M, Pal T (2010) High-yield synthesis of 1D Rh nano- structures from surfactant mediated reductive pathway and their shape transformation. J Phys Chem C 114:16129-16142
  561. Liu JW, Chen F, Zhang M, Qi H, Zhang CL, Yu SH (2010) Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 26:11372-11377
  562. Horikoshi S, Abe H, Torigoe K, Abe M, Serpone N (2010) Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous car- boxymethylcellulose solutions in batch and continuous-fl ow reactors. Nanoscale 2:1441-1447
  563. Liu SH, Lu F, Zhu JJ (2011) Highly fl uorescent Ag nanoclusters: microwave-assisted green synthesis and Cr 3+ sensing. Chem Commun 47:2661-2663
  564. Li RQ, Wang CL, Bo F, Wang ZY, Shao HB, Xu SH, Cui YP (2012) Microwave-assisted syn- thesis of fl uorescent Ag nanoclusters in aqueous solution. ChemPhysChem 13:2097-2101
  565. Uppal MA, Kafi zas A, Ewing MB, Parkin IP (2010) The effect of initiation method on the size, monodispersity and shape of gold nanoparticles formed by the Turkevich method. New J Chem 34:2906-2914
  566. Yan L, Cai YQ, Zheng BZ, Yuan HY, Guo Y, Xiao D, Choi MMF (2012) Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J Mater Chem 22:1000-1005
  567. Yue Y, Liu TY, Li HW, Liu ZY, Wu YQ (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fl uorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251-2254
  568. Shang L, Yang LX, Stockmar F, Popescu R, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2012) Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg 2+ in living cells using fl uorescence imaging. Nanoscale 4:4155-4160
  569. Kou JH, Varma RS (2012) Beet juice utilization: expeditious green synthesis of noble metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves. RSC Adv 2:10283-10290
  570. Liu YQ, Zhang M, Wang FX, Pan GB (2012) Facile microwave-assisted synthesis of uniform single-crystal copper nanowires with excellent electrical conductivity. RSC Adv 2:11235-11237
  571. Hu B, Wu LH, Liu SJ, Yao HB, Shi HY, Li GP, Yu SH (2010) Microwave-assisted synthesis of silver indium tungsten oxide mesocrystals and their selective photocatalytic properties. Chem Commun 46:2277-2279
  572. Xiao LS, Shen H, von Hagen R, Pan J, Belkoura L, Mathur S (2010) Microwave assisted fast and facile synthesis of SnO 2 quantum dots and their printing applications. Chem Commun 46:6509-6511
  573. Huang H, Sithambaram S, Chen CH, Kithongo CK, Xu LP, Iyer A, Garces HF, Suib SL (2010) Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies. Chem Mater 22:3664-3669
  574. Volanti DP, Orlandi MO, Andrés J, Longo E (2010) Effi cient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 12:1696-1699
  575. Zhang DQ, Li GS, Wang F, Yu JC (2010) Green synthesis of a self-assembled rutile mesocrystalline photocatalyst. CrystEngComm 12:1759-1763
  576. Conrad F, Zhou Y, Yulikov M, Hametner K, Weyeneth S, Jeschke G, Gunther D, Grunwaldt JD, Patzke GR (2010) Microwave-hydrothermal synthesis of nanostructured zinc-copper gallates. Eur J Inorg Chem 2010:2036-2043
  577. Phuruangrat A, Ham DJ, Hong SJ, Thongtem S, Lee JS (2010) Synthesis of hexagonal WO 3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J Mater Chem 20:1683-1690
  578. Qiu G, Dharmarathna S, Genuino H, Zhang Y, Huang H, Suib SL (2011) Facile microwave- refl uxing synthesis and catalytic properties of vanadium pentoxide nanomaterials. ACS Catal 1:1702-1709
  579. Wu LH, Yao HB, Hu B, Yu SH (2011) Unique lamellar sodium/potassium iron oxide nanosheets: facile microwave-assisted synthesis and magnetic and electrochemical properties. Chem Mater 23:3946-3952
  580. Cao XF, Zhang L, Chen XT, Xue ZL (2011) Microwave-assisted solution-phase preparation of fl ower-like Bi 2 WO 6 and its visible-light-driven photocatalytic properties. CrystEngComm 13:306-311
  581. Zhang L, Cao XF, Chen XT, Xue ZL (2011) Fast preparation and growth mechanism of erythrocyte-like Cd 2 Ge 2 O 6 superstructures via a microwave-hydrothermal process. CrystEngComm 13:2464-2471
  582. Li XY, Liu DP, Song SY, Wang X, Ge X, Zhang HJ (2011) Rhombic dodecahedral Fe 3 O 4 : ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties. CrystEngComm 13:6017-6020
  583. Yang YL, Hu CC, Hua CC (2011) Preparation and characterization of nanocrystalline Ti x Sn 1-x O 2 solid solutions via a microwave-assisted hydrothermal synthesis process. CrystEngComm 13:5638-5641
  584. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co 3 O 4 . J Phys Chem C 115:25543-25556
  585. Qiu GH, Huang H, Genuino H, Opembe N, Stafford L, Dharmarathna S, Suib SL (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe 2 O 3 for catalysts and adsorbents. J Phys Chem C 115:19626-19631
  586. Milosevic I, Jouni H, David C, Warmont F, Bonnin D, Motte L (2011) Facile microwave pro- cess in water for the fabrication of magnetic nanorods. J Phys Chem C 115:18999-19004
  587. Chou SL, Wang JZ, Liu HK, Dou SX (2011) Rapid synthesis of Li 4 Ti 5 O 12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220-16227
  588. Chen M, Wang ZH, Han DM, Gu FB, Guo GS (2011) Porous ZnO polygonal nanofl akes: syn- thesis, use in high-sensitivity NO 2 gas sensor, and proposed mechanism of gas sensing. J Phys Chem C 115:12763-12773
  589. Truong TT, Liu YZ, Ren Y, Trahey L, Sun YG (2012) Morphological and crystalline evolution of nanostructured MnO 2 and its application in lithium-air batteries. ACS Nano 6:8067-8077
  590. Araújo VD, Avansi W, de Carvalho HB, Moreira ML, Longo E, Ribeiro C, Bernardi MIB (2012) CeO 2 nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. CrystEngComm 14:1150-1154
  591. Almeida MAP, Cavalcante LS, Morilla-Santos C, Dalmaschio CJ, Rajagopal S, Li MS, Longo E (2012) Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO 4 nanocrystals. CrystEngComm 14:7127-7132
  592. Wang QM, Zhang ZY, Zheng YH, Cai WS, Yu YF (2012) Multiple irradiation triggered the formation of luminescent LaVO 4 : Ln 3+ nanorods and in cellulose gels. CrystEngComm 14:4786-4793
  593. Zhang JC, Wang W, Li BX, Zhang XH, Zhao XD, Liu XY, Zhao M (2012) Self-assembled NaY(WO 4 ) 2 hierarchical dumbbells: microwave-assisted hydrothermal synthesis and their tunable upconversion luminescent properties. Eur J Inorg Chem 2012:2220-2225
  594. Shi JY, Liu GJ, Wang N, Li C (2012) Microwave-assisted hydrothermal synthesis of perovskite NaTaO 3 nanocrystals and their photocatalytic properties. J Mater Chem 22:18808-18813
  595. M.-G. Ma
  596. Bhushan B (ed) (2012) Encyclopedia of nanotechnology, vol 1-4. Springer, New York, NY
  597. Nalwa HS (ed) (2004) Encyclopedia of nanoscience and nanotechnology, vol 1-10. American Scientific Publishers, Stevenson Ranch, CA
  598. Nalwa HS (2011) Encyclopedia of nanoscience and nanotechnology, vol 11-25. American Scientific Publishers, Stevenson Ranch, CA
  599. Langa F, Nierengarten J-F (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge, UK
  600. Basiuk VA, Basiuk EV (eds) (2008) Chemistry of carbon nanotubes, vol 1-3. American Scientific Publishers, Stevenson Ranch, CA
  601. Shenderova OA, Gruen DM (eds) (2012) Ultrananocrystalline diamond: synthesis, properties and applications, 2nd edn. Elsevier, Oxford, UK
  602. Rao CNR, Sood AK (eds) (2013) Graphene: synthesis, properties, and phenomena. Wiley- VCH, Weinheim
  603. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253
  604. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096
  605. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193
  606. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366
  607. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156
  608. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11
  609. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, NY, p 30
  610. Zhu S-E, Li F, Wang G-W (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42(7535)
  611. Hirsch A, Li Q, Wudl F (1991) Globe-trotting hydrogens on the surface of the fullerene com- pound C60H6(N(CH2CH2)2O)6. Angew Chem Int Ed Engl 30:1309
  612. Wudl F, Hirsch A, Khemani KC, Suzuki T, Allemand PM, Koch HE, Srdanov G, Webb HM (1992) Survey of chemical reactivity of C60, electrophile and dieno-polarophile par excel- lence, In: Hammond GS, Kuck VJ (eds) Fullerenes: synthesis, properties and chemistry of large carbon clusters. ACS Symp Ser Vol. 48, Chapter 11, p 161
  613. Seshadri R, Govindaraj A, Nagarajan R, Pradeep T, Rao CNR (1992) Addition of amines and halogens with fullerenes C60 and C70. Tetrahedron Lett 33:2069
  614. Kampe KD, Egger N, Vogel M (1993) Diamino and tetraamino derivatives of buckminster- fullerene C60. Angew Chem Int Ed Engl 32:1174
  615. Troshina AO, Thoshin PA, Peregudov AS, Kozlovski VI, Lyubovskaya RN (2006) Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives. Chem Eur J 12:5569
  616. Isobe H, Tomita N, Nakamura E (2000) One-step multiple-addition of amine to [60]fullerene. Synthesis of tetra(amino)fullerene epoxide under photochemical aerobic conditions. Org Lett 2:3663
  617. Lawson GE, Kitaygorodskiy A, Ma B, Bunker CE, Sun YP (1995) Photoinduced Inter-and Intra-molecular electron transfer reactions of [60]fullerene and a tertiary amine. Formation of the cycloadduct N-ethyl-trans-2',5'-dimethylpyrrolidino[3',4':1,2][60]fullerene. J Chem Soc Chem Commun 21:2225
  618. Wang GW, Chen XP, Cheng X (2006) Unexpected reactions of [60]fullerene involving tertiary amines and insight into the reaction mechanisms. Chem Eur J 12:7246
  619. Basiuk (Golovataya-Dzhymbeeva) EV, Basiuk VA, Shabel'nikov VP, Golovatyi VG, Flores JO, Saniger JM (2003) Reaction of silica-supported fullerene C60 with nonylamine vapor. Carbon 41:2339
  620. Amelines-Sarria O, Basiuk VA (2009) Multiple addition of methylamine to fullerene C60: a density functional theory study. J Comput Theor Nanosci 6:73
  621. Contreras-Torres FF, Basiuk VA, Basiuk EV (2008) Regioselectivity in azahydro[60]fuller- ene derivatives: application of general-purpose reactivity indicators. J Phys Chem A 112:8154
  622. Amelines-Sarria O, Basiuk VA (2009) A DFT study of methylamine polyaddition to C80 fullerene. Superlattice Microst 46:302
  623. Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E, Acosta-Najarro D, Basiuk VA (2007) Cross-linking of C60 films with 1,8-diaminooctane and further decoration with silver nanoparticles. J Nanosci Nanotechnol 7:3563
  624. Basiuk EV, Zauco EA, Basiuk VA (2006) Chemical cross-linking in C60 thin films (Chapter 20). In: Mahalik NP (ed) Micromanufacturing and Nanotechnology. Springer, Berlin, p 453 30. Dmitruk NL, Borkovskaya OY, Mamontova IB, Kondratenko OS, Naumenko DO, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E (2007) Optical and electrical characteriza- tion of chemically and photopolymerized C60 thin films on silicon substrates. Thin Solid Films 515:7716
  625. Dmitruk NL, Borkovskaya OY, Mamykin SV, Naumenko DO, Berezovska NI, Dmitruk IM, Meza-Laguna V, Alvarez-Zauco E, Basiuk EV (2008) Fullerene C60-silver nanoparticles hybrid structures: optical and photoelectric characterization. J Nanosci Nanotechnol 8:5958
  626. Martínez-Loran E, Alvarez-Zauco E, Basiuk VA, Basiuk EV, Bizarro M (2011) Fullerene thin films functionalized by 1,5-diaminonaphthalene: preparation and properties. J Nanosci Nanotechnol 11:5569
  627. Dmitruk NL, Borkovskaya OY, Naumenko DO, Mamontova IB, Berezovska NI, Dmitruk IM, Meza-Laguna V, Basiuk EV (2011) Effect of thin C60 films modification with aminosubsti- tuted polycyclic aromatic hydrocarbons and meso-tetraphenylporphine on optical and photo- electric properties of Au/C60/Si photodiode structures. Mol Cryst Liq Cryst 535:10
  628. Contreras-Torres FF, Basiuk EV, Basiuk VA, Meza-Laguna V, Gromovoy TY (2012) Nanostructured diamine-fullerene derivatives: computational DFT study and experimental evidence for their formation via gas-phase functionalization. J Phys Chem A 116:1663
  629. Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Alvarez-Zauco E, Gromovoy TY, Amelines-Sarria O, Bassiouk M, Puente-Lee I, Basiuk VA (2008) Fullerene C60 films cross- linked with octane-1,8-dithiol: preparation, characterization and the use as template for chemical deposition of gold nanoparticles. J Nanosci Nanotechnol 8:3828
  630. Dmitruk NL, Borkovskaya OY, Mamykin SV, Naumenko DO, Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV, Puente Lee I (2010) Optical and photoelectrical studies of gold nanoparticle-decorated C60 films. Thin Solid Films 518:1737
  631. Dmitruk N, Borkovskaya O, Naumenko D, Berezovska N, Dmitruk I, Meza-Laguna V, Alvarez-Zauco E, Basiuk E (2009) Optical and photoluminescent properties of nanostruc- tured hybrid films based on functional fullerenes and metal nanoparticles. Semicond Phys Quantum Electron Optoelectron 12:205
  632. Dmitruk NL, Borkovskaya OY, Havrylenko TS, Naumenko DO, Petrik P, Meza-Laguna V, Basiuk (Golovataya-Dzhymbeeva) EV (2010) Effect of chemical modification of thin C60 fullerene films on the fundamental absorption edge. Semicond Phys Quantum Electron Optoelectron 13:180
  633. Ito O, D'Souza F (2012) Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17:5816
  634. D'Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons appli- cable to solar cells. Chem Soc Rev 41:86
  635. Basiuk VA, Contreras-Torres FF, Bassiouk M, Basiuk EV (2009) Interactions of porphyrins with low-dimensional carbon materials. J Comput Theor Nanosci 6:1383
  636. Bassiouk M, Álvarez-Zauco E, Basiuk VA (2013) Adsorption of meso-tetraphenylporphines on thin films of C60 fullerene. Appl Surf Sci 275:374
  637. Kolokoltsev Y, Amelines-Sarria O, T. Yu G, Basiuk VA (2010) Interaction of mesotetrap- henylporphines with C60 fullerene: comparison of several density functional theory function- als implemented in DMol3 module. J Comput Theor Nanosci 7:1095
  638. Amelines-Sarria O, Kolokoltsev Y, Basiuk VA (2010) Noncovalent 1:2 complex of mesotet- raphenylporphine with C60 fullerene: a density functional theory study. J Comput Theor Nanosci 7:1996
  639. Basiuk VA, Amelines-Sarria O, Kolokoltsev Y (2010) A density functional theory study of porphyrin-pyridine-fullerene triad ZnTPP•Py•C60. J Comput Theor Nanosci 7:2322
  640. Basiuk VA, Kolokoltsev Y, Amelines-Sarria O (2011) Noncovalent interaction of mesotetrap- henylporphine with C60 fullerene as studied by several DFT methods. J Nanosci Nanotechnol 11:5519
  641. Basiuk VA, Henao-Holguín LV (2013) Effects of orbital cutoff in DMol3 DFT calculations: a case study of meso-tetraphenylporphine-C60 complex. J Comput Theor Nanosci 10:1266
  642. Basiuk VA, Henao-Holguín LV (2014) Dispesion-corrected DFT calculations of meso-tetra- phenylporphine-C60 complex by using DMol3 module. J Comput Theor Nanosci 11:1609
  643. Basiuk EV, Ochoa-Olmos OE, De la Mora-Estrada LF (2011) Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants. J Nanosci Nanotechnol 11:3016
  644. Ochoa-Olmos OE, Montero-Montoya R, Serrano-García L, Basiuk EV (2009) Genotoxic properties of nylon-6/MWNTs nanohybrid. J Nanosci Nanotechnol 9:4727
  645. Basiuk VA, Basiuk EV, Shishkova S, Dubrovsky JG (2013) Systemic phytotoxic impact of as-prepared carbon nanotubes in long-term assays: a case study of Parodia ayopayana (Cactaceae). Sci Adv Mater 5:1337
  646. Basiuk EV (2008) Solvent-free techniques for covalent chemical modification of carbon nanotubes (chapter 4). In: Basiuk VA, Basiuk EV (eds) Chemistry of carbon nanotubes, 2nd edn. American Scientific Publishers, Stevenson Ranch, CA, p 55
  647. Khabashesku VN, Billups WE, Margrave JL (2002) Fluorination of single-wall carbon nano- tubes and subsequent derivatization reactions. Acc Chem Res 35:1087
  648. Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Side wall amino-functionalization of single-walled carbon nanotubes through fluorination and subse- quent reactions with terminal diamines. Nano Lett 3:331
  649. Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H (2004) Fluorination of open-and closed-end single-walled carbon nanotubes. Phys Chem Chem Phys 6:1769
  650. Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188
  651. Gu Z, Peng H, Hauge RH, Smalley RE, Margrave JL (2002) Cutting single-wall carbon nano- tubes through fluorination. Nano Lett 2:1009
  652. Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107
  653. Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang X, Scuseria GE, Radloff C, Halas N (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313:445
  654. Marcoux PR, Schreiber J, Batail P, Lefrant S, Renouard J, Jacob G, Albertini D, Mevellec JY (2002) A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys Chem Chem Phys 4:2278
  655. Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL (1999) Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B 103:4318
  656. Peng H, Gu Z, Yang J, Zimmerman JL, Willis PA, Bronikowski MJ, Smalley RE, Hauge RH, Margrave JL (2001) Fluorotubes as cathodes in lithium electrochemical cells. Nano Lett 1:625
  657. Pehrsson PE, Zhao W, Baldwin JW, Song C, Liu J, Kooi S, Zheng B (2003) Thermal fluorina- tion and annealing of single-wall carbon nanotubes. J Phys Chem B 107:5690
  658. Zhao W, Song C, Zheng B, Liu J, Viswanathan T (2002) Thermal recovery behavior of fluo- rinated single-walled carbon nanotubes. J Phys Chem B 106:293
  659. An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park C-Y, Lee YH, Lee YS, Chung YS (2002) X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett 80:4235
  660. Plank NOV, Jiang L, Cheung R (2003) Fluorination of carbon nanotubes in CF4 plasma. Appl Phys Lett 83:2426
  661. Hamwi A, Alvergnat H, Bonnamy S, Béguin F (1997) Fluorination of carbon nanotubes. Carbon 35:723
  662. Yudanov NF, Okotrub AV, Shubin YV, Yudanova LI, Bulusheva LG (2002) Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem Mater 14:1472
  663. Hayashi T, Terrones M, Scheu C, KimYA, Ruhle M, Nakajima T, Endo M (2002) NanoTeflons: structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett 2:491
  664. Park S-J, Jeong H-J, Nah C (2004) A study of oxyfluorination of multi-walled carbon nano- tubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A 385:13
  665. Unger E, Liebau M, Duesberg GS, Graham AP, Kreupl F, Seidel R, Hoenlein W (2004) Fluorination of carbon nanotubes with xenon difluoride. Chem Phys Lett 399:280
  666. Valentini L, Puglia D, Armentano I, Kenny JM (2005) Sidewall functionalization of single- walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with ali- phatic amines. Chem Phys Lett 403:385
  667. Muramatsu H, Kim YA, Hayashi T, Endo M, Yonemoto A, Arikai H, Okino F, Touhara H (2005) Fluorination of double-walled carbon nanotubes. Chem Commun 15:2002
  668. Ziegler KJ, Gu Z, Shaver J, Chen Z, Flor EL, Schmidt DJ, Chan C, Hauge RH, Smalley RE (2005) Cutting single-walled carbon nanotubes. Nanotechnology 16:S539
  669. Wang Y-Q, Sherwood PMA (2004) Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater 16:5427
  670. Valentini L, Armentano I, Mengoni F, Puglia D, Pennelli G, Kenny JM (2005) Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. J Appl Phys 97:114320-114321
  671. Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC (2005) Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J Appl Phys 98:074308-1
  672. Lin Y, Baggett DW, Kim JW, Siochi EJ, Connell JW (2011) Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating. ACS Appl Mater Interfaces 3:1652
  673. Xu ZW, Li Z, Tan XH, Holt CMB, Zhang L, Amirkhiz BS, Mitlin D (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753
  674. Ni XJ, Zhang BS, Li C, Pang M, Su DS, Williams CT, Liang CH (2012) Microwave-assisted green synthesis of uniform ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation. Catal Commun 24:65
  675. Khare BN, Wilhite P, Quinn RC, Chen B, Schingler RH, Tran B, Imanaka H, So CR, Bauschlicher CW Jr, Meyyappan M (2004) Functionalization of carbon nanotubes by ammo- nia glow-discharge: experiments and modeling. J Phys Chem B 108:8166
  676. Khare B, Wilhite P, Tran B, Teixeira E, Fresquez K, Nna Mvondo D, Bauschlicher C Jr, Meyyappan M (2005) Functionalization of carbon nanotubes via nitrogen glow discharge. J Phys Chem B 109:23466
  677. Chen Q, Dai L, Gao M, Huang S, Mau A (2001) Plasma activation of carbon nanotubes for chemical modification. J Phys Chem B 105:618
  678. Bystrzejewski M, Rummeli MH, Gemming T, Pichler T, Huczko A, Lange H (2009) Functionalizing single-wall carbon nanotubes in hollow cathode glow discharges. Plasma Chem Plasma Process 29:79
  679. Kónya Z, Vesselenyi I, Niesz K, Kukovecz A, Demortier A, Fonseca A, Delhalle J, Mekhalif Z, Nagy JB, Koós AA, Osváth Z, Kocsonya A, Biró LP, Kiricsi I (2002) Large scale produc- tion of short functionalized carbon nanotubes. Chem Phys Lett 360:429
  680. Barthos R, Méhn D, Demortier A, Pierard N, Morciaux Y, Demortier G, Fonseca A, Nagy JB (2005) Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon 43:321
  681. Li X, Liu L, Qin Y, Wu W, Guo Z-X, Dai L, Zhu D (2003) C60 modified single-walled carbon nanotubes. Chem Phys Lett 377:32
  682. Pan H, Liu L, Guo ZX, Dai L, Zhang F, Zhu D, Czerw R, Carroll DL (2003) Carbon nanotu- bols from mechanochemical reaction. Nano Lett 3:29
  683. Schulte K, Yan C, Ahola-Tuomi M, Stróżecka A, Moriarty PJ, Khlobystov AN (2008) Encapsulation of cobalt phthalocyanine molecules in carbon nanotubes. J Phys Conf Ser 100:012017
  684. Schulte K, Swarbrick JC, Smith NA, Bondino F, Magnano E, Khlobystov AN (2007) Assembly of cobalt phthalocyanine stacks inside carbon nanotubes. Adv Mater 19:3312
  685. Basiuk VA, Henao-Holguín LV, Álvarez-Zauco E, Bassiouk M, Basiuk EV (2013) Gas-phase noncovalent functionalization of carbon nanotubes with a Ni(II) tetraaza[14]annulene complex. Appl Surf Sci 270:634
  686. Bassiouk M, Basiuk VA, Basiuk EV, Álvarez-Zauco E, Martínez-Herrera M, Rojas-Aguilar A, Puente-Lee I (2013) Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl Surf Sci 275:168
  687. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3:1259
  688. Rodríguez-Galván A, Contreras-Torres FF, Basiuk EV, Alvarez-Zauco E, Heredia A, Basiuk VA (2011) Aggregation of human serum albumin on graphite and single-walled carbon nano- tubes as studied by scanning probe microscopies. J Nanosci Nanotechnol 11:5491
  689. Rodríguez-Galván A, Contreras-Torres FF, Basiuk EV, Heredia A, Basiuk VA (2013) Deposition of silver nanoparticles onto human serum albumin-functionalized multi-walled carbon nanotubes. Can J Chem Eng 91:264
  690. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12:1952
  691. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853
  692. Alvarez-Zauco E, Basiuk VA, Acosta-Najarro D, Flores-Morales C, Puente-Lee I, Bassiouk M, Gromovoy TY, Mischanchuk BG, Basiuk EV (2010) Microwave irradiation of pristine multi-walled carbon nanotubes in vacuum. J Nanosci Nanotechnol 10:448
  693. Basiuk EV, Monroy-Peláez M, Puente-Lee I, Basiuk VA (2004) Direct solvent-free amination of closed-cap carbon nanotubes: a link to fullerene chemistry. Nano Lett 4:863
  694. Basiuk EV, Gromovoy TY, Datsyuk A, Palyanytsya BB, Pokrovskiy VA, Basiuk VA (2005) Solvent-free derivatization of pristine multi-walled carbon nanotubes with amines. J Nanosci Nanotechnol 5:984
  695. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) A route for bulk separation of semiconducting from metallic single wall carbon nanotubes. J Am Chem Soc 125:3370
  696. Lin T, Zhang W-D, Huang J, He C (2005) A DFT study of the amination of fullerenes and carbon nanotubes: reactivity and curvature. J Phys Chem B 109:13755
  697. Sato R, Basiuk EV, Saniger-Blesa JM (2006) Application of principal component analysis to discriminate the Raman spectra of functionalized multi-walled carbon nanotubes. J Raman Spectrosc 37:1302
  698. Basiuk (Golovataya-Dzhymbeeva) EV, Ochoa-Olmos O, Contreras-Torres FF, Meza-Laguna V, Alvarez-Zauco E, Puente-Lee I, Basiuk VA (2011) "Green" functionalization of pristine multi-walled carbon nanotubes with long-chain aliphatic amines. J Nanosci Nanotechnol 11:5546
  699. Contreras-Torres FF, Ochoa-Olmos OE, Basiuk EV (2009) Amine-functionalized multi- walled carbon nanotubes: an atomic force microscopy study. J Scan Probe Microsc 4:100
  700. Basiuk EV, Basiuk VA, Meza-Laguna V, Contreras-Torres FF, Martínez M, Rojas-Aguilar A, Salerno M, Zavala G, Falqui A, Brescia R (2012) Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: looking for cross-linking effects. Appl Surf Sci 259:465
  701. Basiuk EV, Solis-González OA, Alvarez-Zauco E, Puente-Lee I, Basiuk VA (2009) Nanohybrids of nylon 6 with multi-walled carbon nanotubes: solvent-free polymerization of ε-caprolactam under variable experimental conditions. J Nanosci Nanotechnol 9:3313
  702. Salvador-Morales C, Basiuk EV, Basiuk VA, Green MLH, Sim RB (2008) Effects of covalent functionalisation on the biocompatibility characteristics of multi-walled carbon nanotubes. J Nanosci Nanotechnol 8:2347
  703. Basiuk EV, Puente-Lee I, Claudio-Sánchez J-L, Basiuk VA (2006) Solvent-free derivatization of pristine multi-walled carbon nanotubes with dithiols. Mater Lett 60:3741
  704. Zanella R, Basiuk EV, Santiago P, Basiuk VA, Mireles E, Puente-Lee I, Saniger JM (2005) Deposition of gold nanoparticles onto thiol-functionalized multi-walled carbon nanotubes. J Phys Chem B 109:16290
  705. Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663
  706. Shakun A, Vuorinen J, Hoikkanen M, Poikelispää M, Das A (2014) Hard nanodiamonds in soft rubbers: past, present and future-a review. Compos Part A 64:49
  707. Yakovlev RY, Solomatin AS, Leonidov NB, Kulakova II, Lisichkin GV (2014) Detonation diamond-a perspective carrier for drug delivery systems. Russ J Gen Chem 84:379
  708. Moosa B, Fhayli K, Li S, Julfakyan K, Ezzeddine A, Khashab NM (2014) Applications of nanodiamonds in drug delivery and catalysis. J Nanosci Nanotechnol 14:332
  709. Basiuk EV, Santamaría-Bonfil A, Meza-Laguna V, Gromovoy TY, Alvares-Zauco E, Contreras-Torres FF, Rizo J, Zavala G, Basiuk VA (2013) Solvent-free covalent functional- ization of nanodiamond with amines. Appl Surf Sci 275:324
  710. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465
  711. Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J (2014) Microwave-assisted synthesis of MoS2/ graphene nanocomposites for efficient hydrodesulfurization. Fuel 119:163
  712. Gollavelli G, Chang C-C, Ling Y-C (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462
  713. Sharma P, Darabdhara G, Reddy TM, Borah A, Bezboruah P, Gogoi P, Hussain N, Sengupta P, Das MR (2013) Synthesis, characterization and catalytic application of Au NPs-reduced graphene oxide composites material: an eco-friendly approach. Catal Commun 40:139
  714. Marquardt D, Vollmer C, Thomann R, Steurer P, Mülhaupt R, Redel E, Janiak C (2011) The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon 49:1326
  715. Lin Y, Watson KA, Kim J-W, Baggett DW, Working DC, Connell JW (2013) Bulk preparation of holey graphene via controlled catalytic oxidation. Nanoscale 5:7814
  716. Castelaín M, Shuttleworth PS, Marco C, Ellis G, Salavagione HJ (2013) Comparative study of the covalent diazotization of graphene and carbon nanotubes using thermogravimetric and spectroscopic techniques. Phys Chem Chem Phys 15:16806
  717. Mondal T, Bhowmick AK, Krishnamoorti R (2012) Chlorophenyl pendant decorated graphene sheet as a potential antimicrobial agent: synthesis and characterization. J Mater Chem 22:22481
  718. Du Z-Z, Ai W, Zhao J-F, Xie L-H, Huang W (2014) Synthesis and characterization of amphiphilic graphene. Sci China Technol Sci 57:244
  719. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709-1727
  720. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quan- tum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293-346
  721. Ramanavičius A, Kaušaitė A, Ramanavičienė A (2005) Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens Actuators B Chem 111:532-539
  722. Fendler JH (2008) Nanoparticles and nanostructured fi lms: preparation, characterization, and applications. Wiley, New York
  723. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by ter- restrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59-79
  724. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1-13
  725. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395-402
  726. Mckenzie LC, Hutchison JE (2004) Green nanoscience: an integrated approach to greener prod- ucts, processes, and applications. Chimica oggi. Chemistry Today. http://pages.uoregon.edu/ cgnn/ nanoscience.pdf
  727. Nath D, Banerjee P (2013) Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol 36:997-1014
  728. Chakrabarti S, Fathpour S, Moazzami K, Phillips J, Lei Y, Browning N et al (2004) Pulsed laser annealing of self-organized InAs/GaAs quantum dots. J Electron Mater 33:L5-L8
  729. Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114-5120
  730. Shukla S, Seal S (1999) Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nanostruct Mater 11: 1181-1193
  731. Raffi M, Rumaiz AK, Hasan M, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378-3384
  732. Rosemary M, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81-84
  733. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223-315
  734. Pérez-Tijerina E, Pinilla MG, Mejía-Rosales S, Ortiz-Méndez U, Torres A, José-Yacamán M (2008) Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Discuss 138:353-362
  735. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO 2 . Appl Catal B Environ 69:138-144
  736. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC et al (2008) Anatase TiO 2 single crystals with a large percentage of reactive facets. Nature 453:638-641
  737. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310-325
  738. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A Physicochem Eng Asp 202:175-186
  739. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characteriza- tion of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522-527
  740. Kvítek L, Prucek R, Panáček A, Novotný R, Hrbáč J, Zbořil R (2005) The infl uence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. J Mater Chem 15:1099-1105
  741. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83-96
  742. Le A-T, Huy P, Tam PD, Huy TQ, Cam PD, Kudrinskiy A et al (2010) Green synthesis of fi nely-dispersed highly bactericidal silver nanoparticles via modifi ed Tollens technique. Curr Appl Phys 10:910-916
  743. Luque R, Baruwati B, Varma RS (2010) Magnetically separable nanoferrite-anchored glutathi- one: aqueous homocoupling of arylboronic acids under microwave irradiation. Green Chem 12:1540-1543
  744. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358-1374
  745. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250-6284
  746. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469-478
  747. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629-639
  748. Kappe CO (2006) The use of microwave irradiation in organic synthesis. From laboratory curiosity to standard practice in twenty years. CHIMIA Int J Chem 60:308-312
  749. Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62:16-26
  750. Wang Y, Yin L, Palchik O, Hacohen YR, Koltypin Y, Gedanken A (2001) Sonochemical syn- thesis of layered and hexagonal yttrium-zirconium oxides. Chem Mater 13:1248-1251
  751. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327-358
  752. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed 41:1911-1914
  753. Zhang G, Keita B, Dolbecq A, Mialane P, Sécheresse F, Miserque F et al (2007) Green chem- istry-type one-step synthesis of silver nanostructures based on MoV-MoVI mixed-valence polyoxometalates. Chem Mater 19:5821-5823
  754. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17:2679-2694
  755. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, Oxford
  756. Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228-2269
  757. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499-505
  758. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological con- cepts and future applications. J Nanoparticle Res 10:507-517
  759. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609-1624
  760. Bao C, Jin M, Lu R, Zhang T, Zhao YY (2003) Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dendrimer with surface hydroxyl groups. Mater Chem Phys 81:160-165
  761. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137-5142
  762. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100: 1067-1084
  763. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132-140
  764. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611-13614
  765. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem ( Azadirachta indica ) leaf broth. J Colloid Interface Sci 275:496-502
  766. Husseiny M, El-Aziz MA, Badr Y, Mahmoud M (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa . Spectrochim Acta A Mol Biomol Spectrosc 67:1003-1006
  767. Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis . J Bacteriol 141:876-887
  768. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165-1170
  769. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae . J Biotechnol 128:648-653
  770. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822-1826
  771. Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and micro- bial synthesis of sub-10 nm Bi 2 O 3 nanocrystals. J Nanosci Nanotechnol 8:3909-3913
  772. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103-109
  773. Vigneshwaran N, Kathe AA, Varadarajan P, Nachane RP, Balasubramanya R (2006) Biomi- metics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium . Colloids Surf B: Biointerfaces 53:55-59
  774. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11:2079-2085
  775. Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A (2008) Extracellular bio- synthesis of silver nanoparticles using the fungus Fusarium semitectum . Mater Res Bull 43: 1164-1170
  776. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243-247
  777. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501-504
  778. Birla S, Tiwari V, Gade A, Ingle A, Yadav A, Rai M (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli , Pseudomonas aerugi- nosa and Staphylococcus aureus . Lett Appl Microbiol 48:173-179
  779. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939-943
  780. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sedi- ment. Colloids Surf B: Biointerfaces 71:133-137
  781. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl 4 -ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585-3588
  782. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an Alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47-53
  783. Gole A, Dash C, Soman C, Sainkar S, Rao M, Sastry M (2001) On the preparation, character- ization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 12:684-690
  784. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550-3553
  785. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861-1873
  786. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775-778
  787. Wong KK, Douglas T, Gider S, Awschalom DD, Mann S (1998) Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem Mater 10:279-285
  788. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152-155
  789. Archibald DD, Mann S (1993) Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364:430-433
  790. Pazirandeh M, Baral S, Campbell J (1992) Metallized nanotubules derived from bacteria. Biomimetics 1:41-50
  791. Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Bacterial templating of ordered macro- structures in silica and silica-surfactant mesophases. Nature 385:420-423
  792. Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585-587
  793. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube com- posites from template mineralization of tobacco mosaic virus. Adv Mater 11:253-256
  794. Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892-895
  795. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G et al (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100:6946-6951
  796. Gardea-Torresdey J, Parsons J, Gomez E, Peralta-Videa J, Troiani H, Santiago P et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397-401
  797. Bali R, Razak N, Lumb A, Harris A (2006) The synthesis of metallic nanoparticles inside live plants. Nanoscience and nanotechnology, 2006 ICONN'06 international conference on IEEE
  798. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem 44:1133-1138
  799. Fahmy TY, Mobarak F (2011) Green nanotechnology: a short cut to benefi ciation of natural fi bers. Int J Biol Macromol 48:134-136
  800. Terry N, Zayed A (1998) Phytoremediation of selenium. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York, pp 633-655
  801. Lamb A, Anderson C, Haverkamp R (2001) The induced accumulation of gold in the plants Brassica juncea , Berkheya coddii and chicory
  802. Gardea-Torresdey J, Tiemann K, Gamez G, Dokken K, Tehuacanero S, Jose-Yacaman M (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanoparticle Res 1:397-404
  803. Herrera I, Gardea-Torresdey J, Tiemann K, Peralta-Videa J, Armendariz V, Parsons J (2003) Binding of silver (I) ions by alfalfa biomass ( Medicago sativa ): batch pH, time, temperature, and ionic strength studies. J Hazard Subst Res 4:1-16
  804. Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D (2007) Accumulation of gold nanoparticles in Brassica juncea . Int J Phytoremediation 9: 197-206
  805. Ascencio J, Mejia Y, Liu H, Angeles C, Canizal G (2003) Bioreduction synthesis of Eu-Au nanoparticles. Langmuir 19:5882-5886
  806. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxi- dants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogena- tion. Nanotechnology 20:385601
  807. Awadalla FT, Pesic B (1992) Biosorption of cobalt with the AMT TM metal removing agent. Hydrometallurgy 28:65-80
  808. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781-812
  809. Hosea M, Greene B, Mcpherson R, Henzl M, Dale Alexander M, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris . Inorg Chim Acta 123: 161-165
  810. Xie J, Lee JY, Wang DI, Ting YP (2007) Identifi cation of active biomolecules in the high- yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672-682
  811. Drum RW, Gordon R (2003) Star Trek replicators and diatom nanotechnology. Trends Biotechnol 21:325-328
  812. Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197-202
  813. Noll F, Sumper M, Hampp N (2002) Nanostructure of diatom silica surfaces and of biomi- metic analogues. Nano Lett 2:91-95
  814. Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TS et al (2005) Growth of gold nanoparticles in human cells. Langmuir 21:11562-11567
  815. Guo R, Song Y, Wang G, Murray RW (2005) Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc 127:2752-2757
  816. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896-1908
  817. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3
  818. Huo Q (2007) A perspective on bioconjugated nanoparticles and quantum dots. Colloids Surf B: Biointerfaces 59:1-10
  819. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applica- tions. Adv Drug Deliv Rev 60:1307-1315
  820. Aubin-Tam M-E, Hamad-Schifferli K (2008) Structure and function of nanoparticle-protein conjugates. Biomed Mater 3:034001
  821. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxalipla- tin. J Am Chem Soc 132:4678-4684
  822. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57-66
  823. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo- thermal ablation therapy. Mol Cancer Ther 7:1730-1739
  824. De La Isla A, Brostow W, Bujard B, Estevez M, Rodriguez JR, Vargas S et al (2003) Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribol- ogy. Mater Res Innov 7:110-114
  825. Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomateri- als. Journal of Biomedical Research 26:143-151
  826. Bootharaju M, Pradeep T (2010) Uptake of toxic metal ions from water by naked and mono- layer protected silver nanoparticles: an X-ray photoelectron spectroscopic investigation. J Phys Chem C 114:8328-8336
  827. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 43:4300-4302
  828. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fl uorescent gold nanopar- ticles for sensing mercury (II). Angew Chem 119:6948-6952
  829. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192-8199
  830. Gan Y, Sun L, Banhart F (2008) One-and two-dimensional diffusion of metal atoms in gra- phene. Small 4:587-591. doi: 10.1002/smll.200700929
  831. Hong W, Bai H, Xu Y et al (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114: 1822-1826. doi: 10.1021/jp9101724
  832. Sowerby SJ, Holm NG, Petersen GB (2001) Origins of life: a route to nanotechnology. Biosystems 61:69-78. doi: 10.1016/S0303-2647(01)00130-7
  833. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharyaa R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943-2970. doi: 10.1039/C2CS15355F
  834. Stylios GK, Giannoudis PV, Wan T (2005) Applications of nanotechnologies in medical prac- tice. Injury 36(Suppl 4):S6-S13. doi: 10.1016/j.injury.2005.10.011
  835. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim
  836. Liu K, Zhang J-J, Cheng F-F et al (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034. doi: 10.1039/c1jm10749f
  837. Fratzl P (2007) Biomimetic materials research: what can we really learn from nature's struc- tural materials? J R Soc Interface 4:637-642. doi: 10.1098/rsif.2007.0218
  838. Pompe W, Rodel G, Weiss H, Mertig M (2013) Bio-nanomaterials. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim
  839. Eduardo R-H, Margarita D, Pilar A (2008) An introduction to Bio-nanohybrid materials. In: Katsuhiko Ariga YML (ed) Eduardo ruiz-hitzky Bio-inorganic hybrid nanomater. Strateg. Synth. Charact. Appl. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 1-40
  840. Wang Q, Zhuang X, Mu J et al (2013) Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 4:1867. doi: 10.1038/ncomms2886
  841. Chen S-Y, Lu Y-Y, Shih F-Y et al (2013) Biologically inspired graphene-chlorophyll photo- transistors with high gain. Carbon 63:23-29. doi: 10.1016/j.carbon.2013.06.031
  842. Hallmann J, Hallmann AQ, Mahaffee WFKJ (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895-914
  843. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198-207. doi: 10.1006/eesa.1999.1860
  844. Klaus-Joerger T, Joerger R (2001) Bacteria as workers in the living factory: metal- accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15-20
  845. Wahl R, Mertig M, Raff J et al (2001) Electron-beam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S layer of Bacillus sphaericus NCTC 9602. Adv Mater 13:736-740. doi: 10.1002/1521-4095(200105)13:10<736::AID- ADMA736>3.0.CO;2-N
  846. Blum AS, Soto CM, Wilson CD et al (2004) Cowpea mosaic virus as a scaffold for 3-D pat- terning of gold nanoparticles. Nano Lett 4:867-870. doi: 10.1021/nl0497474
  847. Romano C, D'Imperio S, Woyke T et al (2013) Comparative genomic analysis of phyloge- netically closely related Hydrogenobaculum sp. Isolates from Yellowstone National Park. Appl Environ Microbiol 79:2932-2943. doi: 10.1128/AEM. 03591-12
  848. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609-643. doi: 10.1099/mic. 0.037143-0
  849. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660- 703. doi: 10.1128/MMBR. 00001-06
  850. Naik RR, Stringer SJ, Agarwal G et al (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169-172. doi: 10.1038/nmat758
  851. Parikh RY, Singh S, Prasad BLV et al (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415-1422. doi: 10.1002/ cbic.200700592
  852. Zhang H, Li Q, Lu Y et al (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285-290. doi: 10.1002/jctb.1191
  853. Saha S, Pal A, Kundu S et al (2010) Photochemical green synthesis of calcium-alginate- stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885-2893. doi: 10.1021/la902950x
  854. He S, Guo Z, Zhang Y et al (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984-3987. doi: 10.1016/j.matlet.2007.01.018
  855. Ahmad A, Senapati S, Khan MI et al (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550-3553
  856. Lahr RH, Vikesland PJ (2014) Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellularly biosynthesized gold nanoparticles. ACS Sustain Chem Eng 2:1599-1608. doi: 10.1021/sc500105n
  857. Slocik JM, Naik RR, Stone MO, Wright DW (2005) Viral templates for gold nanoparticle synthesis. J Mater Chem 15:749. doi: 10.1039/b413074j
  858. Kim J, Rheem Y, Yoo B et al (2010) Peptide-mediated shape-and size-tunable synthesis of gold nanostructures. Acta Biomater 6:2681-2689. doi: 10.1016/j.actbio.2010.01.019
  859. Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanoparticle Res 14:831. doi: 10.1007/s11051-012-0831-7
  860. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfi de nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70:142-146. doi: 10.1016/j.colsurfb.2008.12.025
  861. Shenton W, Pum D, Sleytr UB (1997) Letters to Nature: Synthesis of cadmium sulphide superlattices using bacterial S-layers. Nature 389:585-587
  862. Konishi Y, Ohno K, Saitoh N et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648-653. doi: 10.1016/j.jbiotec. 2006.11.014
  863. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzyme Microb Technol 46:501-505. doi: 10.1016/j. enzmictec.2010.02.006
  864. Bharde A, Wani A, Shouche Y et al (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326-9327. doi: 10.1021/ja0508469
  865. Hu W, Chen S, Li X et al (2009) In situ synthesis of silver chloride nanoparticles into bacte- rial cellulose membranes. Mater Sci Eng C 29:1216-1219. doi: 10.1016/j.msec.2008.09.017
  866. Bao H, Lu Z, Cui X et al (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534-3541. doi: 10.1016/j.actbio.2010.03.030
  867. Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481-489. doi: 10.1007/s12274-010-0008-6
  868. Zhang H, Wang L, Xiong H et al (2003) Hydrothermal synthesis for high-quality CdTe nano- crystals. Adv Mater 15:1712-1715. doi: 10.1002/adma.200305653
  869. Sweeney RY, Mao C, Gao X et al (2004) Bacterial biosynthesis of cadmium sulfi de nanocrys- tals. Chem Biol 11:1553-1559
  870. Hosseinkhani B, Søbjerg LS, Rotaru A-E et al (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109:45-52. doi: 10.1002/bit.23293
  871. Deplanche K (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for appli- cations in green chemistry. J R Soc Interface 9:1705-1712
  872. Carmona F, Mart M, Ga N, Dominguez-vera JM (2014) Bioinspired magneto-optical bacte- ria. Inorg Chem 53:8565-8569
  873. Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70. doi: 10.1186/1556-276X-8-70
  874. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2(3):395-402. doi: 10.1021/nn800131j
  875. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228-2269. doi: 10.1021/cr050943k
  876. Bonatto CC, Silva LP (2014) Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells. Ind Crop Prod 58:46-54. doi: 10.1016/j.indcrop.2014.04.007
  877. Quester K, Avalos-Borja M, Vilchis-Nestor A et al (2013) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS One 8(10):1-8. doi: 10.1371/journal.pone.0077486
  878. Yehia M, Labib S, Ismail SM (2014) Structural and magnetic properties of nano-NiFe2O4 prepared using green nanotechnology. Physica B Condens Matter 446:49-54. doi: 10.1016/j. physb.2014.04.032
  879. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimi- crobial activities. Adv Colloid Interface Sci 145(1-2):83-96. doi: 10.1016/j.cis.2008.09.002
  880. Nadagouda MN, Varma RS (2009) Risk reduction via greener synthesis of noble metal nano- structures and nanocomposites. Nato Sci Peace Secur 3:209-217. doi: 10.1007/978-1- 4020-9491-0_15
  881. Raveendran P, Fu J, Wallen SL (2003) Completely "Green" synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940-13941. doi: 10.1021/ja029267j
  882. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assem- bly, and optical applications. J Phys Chem B 109(29):13857-13870. doi: 10.1021/jp0516846
  883. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109(26):12663-12676. doi: 10.1021/jp051066p
  884. McBrain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 3(2):169-180
  885. Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201-208. doi: 10.2217/17435889.1.2.201
  886. Llorens A, Lloret E, Picouet PA et al (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Tech 24(1):19-29. doi: 10.1016/j. tifs.2011.10.001
  887. Lazarides AA, Kelly KL, Jesen TR et al (2000) Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors. J Mol Struct Theochem 529(1-3):59-63. doi: 10.1016/S0166-1280(00)00532-7
  888. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76-83. doi: 10.1016/j.biotechadv.2008.09.002
  889. Wiederrecht GP, Wurtz GA, Hranisavljevic J (2004) Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles. Nano Lett 4(11):2121-2125. doi: 10.1021/nl0488228
  890. Bystrzejewska-Piotrowska G, Golimowski J, Urbana PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manage 29(9):2587-2595. doi: 10.1016/ j.wasman.2009.04.001
  891. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1-4):132-140. doi: 10.1016/j.hydromet.2006.03.019
  892. Lenerdão EJ, Freitag RA, Batista MJD et al (2003) Green chemistry -the 12 principles of green chemistry and it insertion in the teach and research activities. Quim Nova 26(1): 123-129
  893. Tang SY, Bourne RA, Smith RL et al (2008) The 24 principles of green engineering and green chemistry: "Improvements productively". Green Chem 10:268-269. doi: 10.1039/B719469M
  894. Anastas P, Eghbali N (2009) Green chemistry: principles and practice. Chem Soc Rev 39: 301-312. doi: 10.1039/B918763B
  895. Rajawat S, Qureshi MS (2014) Electrolytic deposition of silver nanoparticles under "Principles of Green Chemistry". Arab J Sci Eng 39:563-568. doi: 10.1007/s13369-013-0879-4
  896. Srivastava P, Bragança J, Ramanan SR et al (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17(5):821-831. doi: 10.1007/ s00792-013-0563-3 L.P. Silva et al.
  897. El-Said WA, Cho H, Yea C et al (2014) Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv Mater Interfaces 26(6):910-918. doi: 10.1002/adma.201303699
  898. Senapati S, Ahmad A, Khan MI et al (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517-520. doi: 10.1002/smll.200400053
  899. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638- 2650. doi: 10.1039/C1GC15386B
  900. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151-157. doi: 10.1002/jctb.2023
  901. Jha AK, Prasad AKJ, Prasad K et al (2009) Plant system: nature's nanofactory. Colloids Surf B Biointerfaces 73:219-223. doi: 10.1016/j.colsurfb.2009.05.018
  902. Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun 9:1104-1105. doi: 10.1039/B315732F
  903. Shankar SS, Ahmad A, Pasricha S (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822-1826. doi: 10.1039/B303808B
  904. Sivaraman SK, Elango I, Kumar S et al (2009) A green protocol for room temperature synthe- sis of silver nanoparticles in seconds. Curr Sci 97(7):1055-1059
  905. Thakkar NK, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257-262. doi: 10.1016/j.nano.2009.07.002
  906. Huang J, Chen C, He N et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105-106. doi: 10.1088/0957-4484/ 18/10/105104
  907. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by ter- restrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169(2):59-79. doi: 10.1016/j.cis.2011.08.004
  908. Tan YN, Lee JY, Wang DI (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132(16):5677-5686. doi: 10.1021/ja907454f
  909. Park Y, Hong YN, Weyers A et al (2011) Polysaccharides and phytochemicals: a natural reser- voir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69-78. doi: 10.1049/iet-nbt.2010.0033
  910. Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characteriza- tion of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine 8:1307-1315, http://dx.doi.org/10.2147/IJN.S36670
  911. Huang X, Wu H, Pu S et al (2011) One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem 13:950-957. doi: 10.1039/c0gc00724b
  912. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. IJA 7(37):274-282
  913. Rai M, Yadav A, Gade A (2008) CRC 675 -current trends in phytosynthesis of metal nanopar- ticles. Crit Rev Biotechnol 28(4):277-284
  914. Kharissova OV, Dias HVR, Kharisov BI et al (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240-248. doi: 10.1016/j.tibtech.2013.01.003
  915. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79-84. doi: 10.1007/s00449-008-0224-6
  916. Vinod VT, Saravanan P, Sreedhar B et al (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gos- sypium). Colloids Surf B Biointerfaces 83(2):291-298. doi: 10.1016/j.colsurfb.2010.11.035
  917. Bar H, Bhui DK, Sahoo GP et al (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339(1-3):134-139. doi: 10.1016/j. colsurfa.2009.02.008
  918. Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A Mol Biomol Spectrosc 74(3): 735-739. doi: 10.1016/j.saa.2009.08.007
  919. Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Mol Biomol 77(4):807-810. doi: 10.1016/j.saa.2010.08.008
  920. Chandran SP, Chaudhary M, Pasricha R et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577-583. doi: 10.1021/ bp0501423
  921. Veeraputhiran V (2013) Bio-catalytic synthesis of silver nanoparticles. Int J Chem Tech Res 5(5):2555-2562
  922. Singh A, Jain D, Upadhyay MK et al (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5(2):483-489
  923. Singh AK, Talat M, Singh DP et al (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12: 1667-1675. doi: 10.1007/s11051-009-9835-3
  924. Mollick MMR, Bhowmick B, Mondal D et al (2014) Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv 4:37838-37848. doi: 10.1039/C4RA07285E
  925. Borase HP, Patil CD, Salunkhe RB et al (2014) Mosquito larvicidal and silver nanoparticles synthesis potential of plant latex. J Entomol Acarol Res 46(2):59-65, http://dx.doi.org/10.4081/ jear.2014.1920
  926. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E Low Dimens Syst Nanostruct 42(5):1417-1424. doi: 10.1016/j.physe.2009.11.081
  927. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45(7):1065-1071. doi: 10.1016/j.procbio.2010.03.024
  928. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369(1-3):27-33. doi: 10.1016/j. colsurfa.2010.07.020
  929. Armendariz V, Herrera I, Jose-yacaman M et al (2004) Size controlled gold nanoparticle for- mation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377-382
  930. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648-8649. doi: 10.1021/ ja047846d
  931. Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691-695. doi: 10.1007/s11051-007-9288-5
  932. Marchiol L, Mattiello A, Poscic F et al (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101. doi: 10.1186/1556-276X-9-101
  933. Zenk MH (1996) Heavy metal detoxifi cation in higher plants-a review. Gene 179(1):21-30. doi: 10.1016/S0378-1119(96)00422-2
  934. Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxifi cation. Curr Opin Plant Biol 3(3):211-216. doi: 10.1016/S1369-5266(00)80067-9
  935. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167-179. doi: 10.1016/j.sajb.2009.10.007
  936. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169-181. doi: 10.1016/j. plantsci.2010.08.016
  937. Lisar SYS, Motafakkerazad R, Hossain MM et al (2012) Water stress. In: Rahman IMM (ed) Water stress in plants: causes, effects and responses. Intech, Croatia, pp 1-14
  938. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme tem- peratures: towards genetic engineering for stress tolerance. Planta 218(1):1-14
  939. Wardle DA, Nilsson MC, Gallet C et al (1998) An ecosystem-level perspective of allelopathy. Biol Rev 73(3):305-319. doi: 10.1111/j.1469-185X.1998.tb00033.x L.P. Silva et al.
  940. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312-1319
  941. Wendell DW, Patti J, Montemagno CD (2006) Using biological inspiration to engineer functional nanostructured materials. Small 2:1324-1329
  942. Raynal M, Ballester P, Vidal-Ferran A et al (2014) Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 43:1734-1787
  943. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813-817
  944. Kumar D, Sharma RC (1998) Advances in conductive polymers. Euro Polymer J 34:1053-1060
  945. Guo B, Glavas L, Albertsson AC (2013) Biodegradable and electrically conducting polymers for biomedical applications. Progr Polymer Sci 38:1263-1286
  946. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537-2574
  947. Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21:241-247
  948. Lehn JM (2002) Toward self-organization and complex matter. Science 295:2400-2403
  949. Isrealachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525-1568
  950. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Progr Polymer Sci 32:876-921
  951. Fonner JM, Forciniti L, Nguyen H et al (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124
  952. Lee JY, Bashur CA, Goldstein AS et al (2009) Polypyrrole-coated electrospun PLGA nanofi- bres for neural tissue applications. Biomaterials 26:4325-4335
  953. Lehn JM (2005) Dynamers: dynamic molecular and supramolecular polymers. Progr Polymer Sci 30:814-831
  954. Jones DM, Smith JR, Huck WT et al (2002) Variable adhesion of micropatterned thermore- sponsive polymer brushes: AFM investigations of poly (N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations. Adv Mater 14:1130-1134
  955. Gabai R, Sallacan N, Chegel V et al (2001) Characterization of the swelling of acrylamido- phenylboronic acid-acrylamide hydrogels upon interaction with glucose by Faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments. J Phys Chem B 105:8196-8202
  956. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967-973
  957. Lin L, Yan J, Li J (2014) Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring. Anal Chem 86:10546-10551. doi:10.1021/ ac501983a
  958. Minten IJ, Claessen VI, Blank K et al (2011) Catalytic capsids: the art of confinement. Chem Sci 2:358-362
  959. Wang Q, Li L, Xu B (2009) Bioinspired supramolecular confinement of luminol and heme proteins to enhance the chemiluminescent quantum yield. Chem Eur J 15:3168-3172
  960. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell appli- cations-a review. J Membr Sci 259:10-26
  961. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253-278
  962. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455-4483
  963. Kim JH, Nam DH, Park CB (2014) Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 28:1-9
  964. Kim JH, Lee M, Lee JS et al (2012) Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew Chem Int Ed 51:517-520
  965. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196-1202
  966. Eisenmesser EZ, Millet O, Labeikovsky W et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117-121
  967. Dong Z, Luo Q, Liu J (2012) Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 41:7890-7908
  968. Koblenz TS, Wassenaar J, Reek JNH (2008) Reactivity within a confined self-assembled nano- space. Chem Soc Rev 37:247-262
  969. Conn MM, Rebek J (1997) Self-assembling capsules. Chem Rev 97:1647-1668
  970. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 29:2418-2421
  971. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Chem 21:1171-1178
  972. Kirby AJ (1996) Enzyme mechanisms, models, and mimics. Angew Chem Int Ed 35:706-724
  973. Li M, Wong KK, Mann S (1999) Organization of inorganic nanoparticles using biotin-streptavidin connectors. Chem Mater 11:23-26
  974. Okuda M, Iwahori K, Yamashita I et al (2003) Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnol Bioeng 84:187-194
  975. M. McTaggart et al.
  976. Lee SY, Gao X, Matsui H (2007) Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: growth of β-Ga 2 O 3 nanoparticles on peptide assemblies as nanoreactors. J Am Chem Soc 129:2954-2958
  977. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171-186
  978. Kumar B, Llorente M, Froehlich J et al (2012) Photochemical and photoelectrochemical reduction of CO 2 . Annu Rev Phys Chem 63:541-569
  979. Barton EE, Rampulla DM, Bocarsly AB (2007) Selective solar-driven reduction of CO 2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342-6344
  980. Lim CH, Holder AM, Hynes JT et al (2014) Reduction of CO 2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. J Am Chem Soc 136:16081-16095
  981. Malardier-Jugroot C, van de Ven TGM, Whitehead MA (2005) Linear conformation of poly(styrene-alt-maleic anhydride) capable of self-assembly: a result of chain stiffening by internal hydrogen bonds. J Phys Chem B 109:7022-7032
  982. McTaggart M, Malardier-Jugroot C, Jugroot M (2015) Self-assembled polymeric nanoreactors with precious metals as active centers. Macromolecules (submitted)
  983. Li X, Malardier-Jugroot C (2013) Confinement effect in the synthesis of polypyrrole within polymeric templates in aqueous environments. Macromolecules 46:2256-2266
  984. Groves MN, Malardier-Jugroot C, Jugroot M (2014) Environmentally friendly synthesis of supportless Pt based nanoreactors in aqueous solution. Chem Phys Lett 612:309-312
  985. Huang X, Li S, Huang Y et al (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292
  986. Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Pique A, Spargo B, McGill RA, Chrisey DB (2001) The deposition, structure, pattern deposition, and activity of bioma- terial thin-fi lms by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398:607-614
  987. Erakovic S, Jankovic A, Ristoscu C, Duta L, Serban N, Visan A, Mihailescu IN, Stan GE, Socol M, Iordache O, Dumitrescu I, Luculescu CR, Janackovic D, Miskovic-Stankovic V (2014) Antifungal activity of Ag:hydroxyapatite thin fi lms synthesized by pulsed laser depo- sition on Ti and Ti modifi ed by TiO 2 nanotubes substrates. Appl Surf Sci 293:37-45
  988. Duta L, Oktar FN, Stan GE, Popescu-Pelin G, Serban N, Luculescu C, Mihailescu IN (2013) Novel doped hydroxyapatite thin fi lms obtained by pulsed laser deposition. Appl Surf Sci 265:41-49
  989. Visan A, Grossin D, Stefan N, Duta L, Miroiu FM, Stan GE, Sopronyi M, Luculescu C, Freche M, Marsan O, Charvilat C, Ciuca S, Mihailescu IN (2014) Biomimetic nanocrystal- line apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications. Mater Sci Eng B-Adv 181:56-63
  990. Iordache S, Cristescu R, Popescu AC, Popescu CE, Dorcioman G, Mihailescu IN, Ciucu AA, Balan A, Stamatin I, Fagadar-Cosma E, Chrisey DB (2013) Functionalized porphyrin conjugate thin fi lms deposited by matrix assisted pulsed laser evaporation. Appl Surf Sci 278:207-210
  991. Palla-Papavlu A, Rusen L, Dinca V, Filipescu M, Lippert T, Dinescu M (2014) Characterization of ethylcellulose and hydroxypropyl methylcellulose thin fi lms deposited by matrix-assisted pulsed laser evaporation. Appl Surf Sci 302:87-91
  992. Heredia E, Bojorge C, Casanova J, Cánepa H, Craievich A, Kellermann G (2014) Nanostructured ZnO thin fi lms prepared by sol-gel spin-coating. Appl Surf Sci 317:19-25, http://dx.doi.org/10.1016/j.apsusc.2014.08.046
  993. Carradò A, Viart N (2010) Nanocrystalline spin coated sol-gel hydroxyapatite thin fi lms on Ti substrate: Towards potential applications for implants. Solid State Sci 12(7):1047-1050, http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.014
  994. Farag AAM, Yahia IS (2010) Structural, absorption and optical dispersion characteristics of rhodamine B thin fi lms prepared by drop casting technique. Opt Commun 283(21): 4310-4317
  995. Caricato AP, Luches A, Leggieri G, Martino M, Rella R (2012) Matrix-assisted pulsed laser deposition of polymer and nanoparticle fi lms. Vacuum 86(6):661-666
  996. Paun IA, Moldovan A, Luculescu CR, Dinescu M (2011) Biocompatible polymeric implants for controlled drug delivery produced by MAPLE. Appl Surf Sci 257(24):10780-10788
  997. Sima F, Axente E, Iordache I, Luculescu C, Gallet O, Anselme K, Mihailescu N (2014) Combinatorial matrix assisted pulsed laser evaporation of a biodegradable polymer and fi bro- nectin for protein immobilization and controlled release. Appl Surf Sci 306:75-79
  998. Paun IA, Moldovan A, Luculescu CR, Staicu A, Dinescu M (2012) MAPLE deposition of PLGA:PEG fi lms for controlled drug delivery: Infl uence of PEG molecular weight. Appl Surf Sci 258(23):9302-9308
  999. Mihailescu M, Popescu RC, Matei A, Acasandrei A, Paun IA, Dinescu M (2014) Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holo- graphic microscopy. Appl Optics 53(22):4850-4858
  1000. Miroiu FM, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Andronie A, Stamatin I, Moga S, Ducu C (2010) Composite biocom- patible hydroxyapatite-silk fi broin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Mater Sci Eng B 169(1-3):151-158, http://dx.doi.org/10.1016/ j.mseb.2009.10.004
  1001. Rusen L, Dinca V, Mitu B, Mustaciosu C, Dinescu M (2014) Temperature responsive func- tional polymeric thin fi lms obtained by matrix assisted pulsed laser evaporation for cells attachment-detachment study. Appl Surf Sci 302:134-140, http://dx.doi.org/10.1016/ j.apsusc.2013.09.122
  1002. Cristescu R, Popescu C, Dorcioman G, Miroiu FM, Socol G, Mihailescu IN, Gittard SD, Miller PR, Narayan RJ, Enculescu M, Chrisey DB (2013) Antimicrobial activity of biopoly- mer-antibiotic thin fi lms fabricated by advanced pulsed laser methods. Appl Surf Sci 278:211-213, http://dx.doi.org/10.1016/j.apsusc.2013.01.062
  1003. Grumezescu V, Socol G, Grumezescu AM, Holban AM, Ficai A, Truşcǎ R, Bleotu C, Balaure PC, Cristescu R, Chifi riuc MC (2014) Functionalized antibiofi lm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl Surf Sci 302:262-267, http://dx.doi.org/10.1016/j.apsusc.2013.09.081
  1004. Caricato AP, Luches A, Rella R (2009) Nanoparticle thin fi lms for Gas sensors prepared by matrix assisted pulsed laser evaporation. Sensors (Basel) 9(4):2682-2696
  1005. Kopecky D, Vrnata M, Vyslouzil F, Myslik V, Fitl P, Ekrt O, Matejka P, Jelinek M, Kocourek T (2009) Polypyrrole thin fi lms for gas sensors prepared by matrix-assisted pulsed laser evap- oration technology: effect of deposition parameters on material properties. Thin Solid Films 517(6):2083-2087
  1006. Pique A (2011) The matrix-assisted pulsed laser evaporation (MAPLE) process: origins and future directions. Appl Phys A-Mater 105(3):517-528
  1007. Itina TE, Zhigilei LV, Garrison BJ (2001) Matrix-assisted pulsed laser evaporation of poly- meric materials: a molecular dynamics study. Nucl Instrum Meth B 180:238-244
  1008. Bubb DM, Papantonakis M, Collins B, Brookes E, Wood J, Gurudas U (2007) The infl uence of solvent parameters upon the surface roughness of matrix assisted laser deposited thin poly- mer fi lms. Chem Phys Lett 448(4-6):194-197
  1009. Jia K, Zhang J, Huang X, Liu X (2014) Size dependent electromagnetic properties of Fe 3 O 4 nanospheres. Chem Phys Lett 614:31-35, http://dx.doi.org/10.1016/j.cplett.2014.09.002
  1010. Xiao L, Li J, Brougham DF, Fox EK, Feliu N, Bushmelev A, Schmidt A, Mertens N, Kiessling F, Valldor M, Fadeel B, Mathur S (2011) Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 5(8):6315-6324
  1011. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe 3 O 4 nanoparticles by chemical co- precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 135:536-539, http://dx.doi.org/10.1016/j.saa.2014.07.059
  1012. Ahmadi S, Chia CH, Zakaria S, Saeedfar K, Asim N (2012) Synthesis of Fe 3 O 4 nanocrystals using hydrothermal approach. J Magn Magn Mater 324(24):4147-4150
  1013. Li YF, Jiang RL, Liu TY, Lv H, Zhou L, Zhang XY (2014) One-pot synthesis of grass-like Fe 3 O 4 nanostructures by a novel microemulsion-assisted solvothermal method. Ceram Int 40(1):1059-1063
  1014. Gu L, He XM, Wu ZY (2014) Mesoporous Fe 3 O 4 /hydroxyapatite composite for targeted drug delivery. Mater Res Bull 59:65-68
  1015. Yan SF, Zhang X, Sun YY, Wang TT, Chen XS, Yin JB (2014) In situ preparation of magnetic Fe 3 O 4 nanoparticles inside nanoporous poly(L-glutamic acid)/chitosan microcapsules for drug delivery. Colloid Surf B 113:302-311
  1016. Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, Pan J (2014) Magnetic Fe3O4 nanoparti- cles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 42:325-332, http://dx.doi. org/10.1016/j.msec.2014.05.041
  1017. Grumezescu AM, Holban AM, Andronescu E, Mogosanu GD, Vasile BS, Chifi riuc MC, Lazar V, Andrei E, Constantinescu A, Maniu H (2014) Anionic polymers and 10 nm Fe 3 O 4 @ UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm 463(2):146-154
  1018. Amarjargal A, Tijing LD, Im I-T, Kim CS (2013) Simultaneous preparation of Ag/Fe 3 O 4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem Eng J 226:243-254, http://dx.doi.org/10.1016/j.cej.2013.04.054
  1019. Fang WJ, Zheng J, Chen C, Zhang HB, Lu YX, Ma L, Chen GJ (2014) One-pot synthesis of porous Fe 3 O 4 shell/silver core nanocomposites used as recyclable magnetic antibacterial agents. J Magn Magn Mater 357:1-6
  1020. Jiang QL, Zheng SW, Hong RY, Deng SM, Guo L, Hu RL, Gao B, Huang M, Cheng LF, Liu GH, Wang YQ (2014) Folic acid-conjugated Fe 3 O 4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci 307:224-233
  1021. Barick KC, Singh S, Bahadur D, Lawande MA, Patkar DP, Hassan PA (2014) Carboxyl deco- rated Fe 3 O 4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci 418:120-125
  1022. Gupta H, Paul P, Kumar N, Baxi S, Das DP (2014) One pot synthesis of water-dispersible dehydroascorbic acid coated Fe 3 O 4 nanoparticles under atmospheric air: Blood cell compat- ibility and enhanced magnetic resonance imaging. J Colloid Interface Sci 430:221-228, http://dx.doi.org/10.1016/j.jcis.2014.05.043
  1023. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T Magn 17(2):1247-1248
  1024. Faiyas APA, Vinod EM, Joseph J, Ganesan R, Pandey RK (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe 3 O 4 ) nanoparticles and its properties. J Magn Magn Mater 322(4):400-404
  1025. Lin CC, Ho JM (2014) Structural analysis and catalytic activity of Fe 3 O 4 nanoparticles prepared by a facile co-precipitation method in a rotating packed bed. Ceram Int 40(7): 10275-10282
  1026. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Effi cacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblas- toma multiforme. J Neuro-Oncol 103(2):317-324
  1027. Meng HN, Zhang ZZ, Zhao FX, Qiu T, Yang JD (2013) Orthogonal optimization design for preparation of Fe 3 O 4 nanoparticles via chemical coprecipitation. Appl Surf Sci 280:679-685
  1028. Ma FX, Sun XY, He K, Jiang JT, Zhen L, Xu CY (2014) Hydrothermal synthesis, magnetic and electromagnetic properties of hexagonal Fe 3 O 4 microplates. J Magn Magn Mater 361:161-165
  1029. Yang XW, Jiang W, Liu L, Chen BH, Wu SX, Sun DP, Li FS (2012) One-step hydrothermal synthesis of highly water-soluble secondary structural Fe 3 O 4 nanoparticles. J Magn Magn Mater 324(14):2249-2257
  1030. Yuan KF, Ni YH, Zhang L (2012) Facile hydrothermal synthesis of polyhedral Fe 3 O 4 nano- crystals, infl uencing factors and application in the electrochemical detection of H 2 O 2 . J Alloy Compd 532:10-15
  1031. Wu R, Liu J-H, Zhao L, Zhang X, Xie J, Yu B, Ma X, Yang S-T, Wang H, Liu Y (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907-913, http://dx.doi.org/10.1016/j.jece.2014.02.005
  1032. Gao G, Qiu PY, Qian QR, Zhou N, Wang K, Song H, Fu HL, Cui DX (2013) PEG-200- assisted hydrothermal method for the controlled-synthesis of highly dispersed hollow Fe 3 O 4 nanoparticles. J Alloy Compd 574:340-344
  1033. Chen FX, Liu R, Xiao SW, Zhang CT (2014) Solvothermal synthesis in ethylene glycol and adsorption property of magnetic Fe 3 O 4 microspheres. Mater Res Bull 55:38-42
  1034. Liu J, Wang L, Wang J, Zhang LT (2013) Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe 3 O 4 nanoparticles. Mater Res Bull 48(2):416-421
  1035. Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH (2014) Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility. J Magn Magn Mater 355:22-30
  1036. Wei Y, Yin GF, Ma CY, Huang ZB, Chen XC, Liao XM, Yao YD, Yin H (2013) Synthesis and cellular compatibility of biomineralized Fe 3 O 4 nanoparticles in tumor cells targeting pep- tides. Colloid Surf B 107:180-188
  1037. Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe 3 O 4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323(2):237-243
  1038. Safari J, Masouleh SF, Zarnegar Z, Najafabadi AE (2014) Water-dispersible Fe 3 O 4 nanopar- ticles stabilized with a biodegradable amphiphilic copolymer. C R Chim 17(2):151-155
  1039. Sohn C-H, Park SP, Choi SH, Park S-H, Kim S, Xu L, Kim S-H, Hur JA, Choi J, Choi TH (2015) MRI molecular imaging using GLUT1 antibody-Fe 3 O 4 nanoparticles in the heman- gioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine 11(1):127-135, http://dx.doi.org/10.1016/j.nano.2014.08.003
  1040. Tran LD, Hoang NMT, Mai TT, Tran HV, Nguyen NT, Tran TD, Do MH, Nguyen QT, Pham DG, Ha TP, Le HV, Nguyen PX (2010) Nanosized magnetofl uorescent Fe 3 O 4 -curcumin con- jugate for multimodal monitoring and drug targeting. Colloids Surf A Physicochem Eng Asp 371(1-3):104-112, http://dx.doi.org/10.1016/j.colsurfa.2010.09.011
  1041. Chen CY, Jiang XC, Kaneti YV, Yu AB (2013) Design and construction of polymerized- glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol 236:157-163
  1042. Chen WH, Cao YH, Liu M, Zhao QH, Huang J, Zhang HL, Deng ZW, Dai JW, Williams DF, Zhang ZJ (2012) Rotavirus capsid surface protein VP4-coated Fe 3 O 4 nanoparticles as a ther- anostic platform for cellular imaging and drug delivery. Biomaterials 33(31):7895-7902
  1043. Lu WS, Shen YH, Xie AJ, Zhang WQ (2013) Preparation and drug-loading properties of Fe 3 O 4 /Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites. J Magn Magn Mater 345:142-146
  1044. Hajdu A, Illes E, Tombacz E, Borbath I (2009) Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloid Surf A 347(1-3):104-108
  1045. Tombacz E, Toth IY, Nesztor D, Illes E, Hajdu A, Szekeres M, Vekas L (2013) Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance. Colloid Surf A 435:91-96
  1046. Salazar-Camacho C, Villalobos M, Rivas-Sanchez MD, Arenas-Alatorre J, Alcaraz- Cienfuegos J, Gutierrez-Ruiz ME (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233-245
  1047. Atila Dinçer C, Yıldız N, Aydoğan N, Çalımlı A (2014) A comparative study of Fe 3 O 4 nanoparticles modifi ed with different silane compounds. Appl Surf Sci 318:297-304, http:// dx.doi.org/10.1016/j.apsusc.2014.06.069
  1048. Yang JH, Zou P, Yang LL, Cao J, Sun YF, Han DL, Yang S, Wang Z, Chen G, Wang BJ, Kong XW (2014) A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe 3 O 4 nanoparticles. Appl Surf Sci 303:425-432
  1049. Shariatinia Z, Nikfar Z (2013) Synthesis and antibacterial activities of novel nanocomposite fi lms of chitosan/phosphoramide/Fe 3 O 4 NPs. Int J Biol Macromol 60:226-234
  1050. Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for syn- thesis of Fe 3 O 4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20(6):3970-3974, http://dx.doi.org/10.1016/j.jiec.2013.12.098
  1051. Long J, Jiao A, Wei B, Wu Z, Zhang Y, Xu X, Jin Z (2014) A novel method for pullulanase immobilized onto magnetic chitosan/Fe 3 O 4 composite nanoparticles by in situ preparation and evaluation of the enzyme stability. J Mol Catal B Enzym 109:53-61, http://dx.doi. org/10.1016/j.molcatb.2014.08.007
  1052. Liu Q, Li H, Zhao Q, Zhu R, Yang Y, Jia Q, Bian B, Zhuo L (2014) Glucose-sensitive colori- metric sensor based on peroxidase mimics activity of porphyrin-Fe 3 O 4 nanocomposites. Mater Sci Eng C 41:142-151, http://dx.doi.org/10.1016/j.msec.2014.04.038
  1053. Yang Z, Zhang C, Zhang J, Bai W (2014) Potentiometric glucose biosensor based on core- shell Fe 3 O 4 -enzyme-polypyrrole nanoparticles. Biosens Bioelectron 51:268-273, http://dx. doi.org/10.1016/j.bios.2013.07.054
  1054. Zhang G, Lai BB, Zhou YY, Chen BA, Wang XM, Lu Q, Chen YH (2011) Fe3O4 nanopar- ticles with daunorubicin induce apoptosis through caspase 8-PARP pathway and inhibit K562 leukemia cell-induced tumor growth in vivo. Nanomedicine 7(5):595-603
  1055. Khorramizadeh MR, Esmail-Nazari Z, Zarei-Ghaane Z, Shakibaie M, Mollazadeh- Moghaddam K, Iranshahi M, Shahverdi AR (2010) Umbelliprenin-coated Fe 3 O 4 magnetite nanoparticles: antiproliferation evaluation on human fi brosarcoma cell line (HT-1080). Mat Sci Eng C-Mater 30(7):1038-1042
  1056. Tie SL, Lee HC, Bae YS, Kim MB, Lee K, Lee CH (2007) Monodisperse Fe 3 O 4 /Fe@SiO 2 core/shell nanoparticles with enhanced magnetic property. Colloid Surf A 293(1-3): 278-285
  1057. Larumbe S, Gomez-Polo C, Perez-Landazabal JI, Pastor JM (2012) Effect of a SiO 2 coating on the magnetic properties of Fe 3 O 4 nanoparticles. J Phys-Condens Matter 24(26)
  1058. Abbas M, Rao BP, Islam MN, Naga SM, Takahashi M, Kim C (2014) Highly stable-silica encapsulating magnetite nanoparticles (Fe 3 O 4 /SiO 2 ) synthesized using single surfactantless- polyol process. Ceram Int 40(1):1379-1385
  1059. Mesarosova M, Kozics K, Babelova A, Regendova E, Pastorek M, Vnukova D, Buliakova B, Razga F, Gabelova A (2014) The role of reactive oxygen species in the genotoxicity of surface-modifi ed magnetite nanoparticles. Toxicol Lett 226(3):303-313
  1060. Xia HQ, Cui B, Zhou JH, Zhang LL, Zhang J, Guo XH, Guo HL (2011) Synthesis and char- acterization of Fe 3 O 4 @C@Ag nanocomposites and their antibacterial performance. Appl Surf Sci 257(22):9397-9402
  1061. Arsianti M, Lim M, Lou SN, Goon IY, Marquis CP, Amal R (2011) Bi-functional gold-coated magnetite composites with improved biocompatibility. J Colloid Interface Sci 354(2): 536-545
  1062. Muzquiz-Ramos EM, Cortes-Hernandez DA, Escobedo-Bocardo JC, Zugasti-Cruz A (2012) In vitro bonelike apatite formation on magnetite nanoparticles after a calcium silicate treat- ment: Preparation, characterization and hemolysis studies. Ceram Int 38(8):6849-6856
  1063. Yun J-G, Lee Y-M, Lee W-J, Kim C-S, Yoon S-G (2013) Selective growth of pure magnetite thin fi lms and/or nanowires grown in situ at a low temperature by pulsed laser deposition. J Mater Chem C 1(10):1977-1982. doi: 10.1039/C2TC00672C
  1064. Grumezescu V, Holban AM, Iordache F, Socol G, Mogoşanu GD, Grumezescu AM, Ficai A, Vasile BŞ, Truşcă R, Chifi riuc MC, Maniu H (2014) MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)-polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl Surf Sci 306:16-22, http://dx.doi.org/10.1016/j. apsusc.2014.01.126
  1065. Oh CY, Oh JH, Ko T (2002) The microstructure and characteristics of magnetite thin fi lms prepared by ultrasound-enhanced ferrite plating. IEEE T Magn 38(5):3018-3020
  1066. Mantovan R, Lamperti A, Georgieva M, Tallarida G, Fanciulli M (2010) CVD synthesis of polycrystalline magnetite thin fi lms: structural, magnetic and magnetotransport properties. J Phys D Appl Phys 43(6)
  1067. Zhang GM, Fan CF, Pan LQ, Wang FP, Wu P, Qiu H, Gu YS, Zhang Y (2005) Magnetic and transport properties of magnetite thin fi lms. J Magn Magn Mater 293(2):737-745
  1068. Qiu HM, Pan LQ, Li LW, Zhu H, Zhao XD, Xu M, Qin LQ, Xiao JQ (2007) Microstructure and magnetic properties of magnetite thin fi lms prepared by reactive sputtering. J Appl Phys 102(11)
  1069. Cristescu R, Popescu C, Socol G, Iordache I, Mihailescu IN, Mihaiescu DE, Grumezescu AM, Balan A, Stamatin I, Chifi riuc C, Bleotu C, Saviuc C, Popa M, Chrisey DB (2012) Magnetic core/shell nanoparticle thin fi lms deposited by MAPLE: investigation by chemical, morphological and in vitro biological assays. Appl Surf Sci 258(23):9250-9255
  1070. Andrew P (2010) Rising threat of infections unfazed by antibiotics. New York Times 86. Breathnach AS (2013) Nosocomial infections and infection control. Medicine 41(11): 649-653, http://dx.doi.org/10.1016/j.mpmed.2013.08.010
  1071. Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifi riuc CM, Mogosanu GD (2014) Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin fi lms fabricated by MAPLE with increased resistance to staph- ylococcal colonization. Biofabrication 6(3)
  1072. Mihaiescu DE, Cristescu R, Dorcioman G, Popescu CE, Nita C, Socol G, Mihailescu IN, Grumezescu AM, Tamas D, Enculescu M, Negrea RF, Ghica C, Chifi riuc C, Bleotu C, Chrisey DB (2013) Functionalized magnetite silica thin fi lms fabricated by MAPLE with antibiofi lm properties. Biofabrication 5(1)
  1073. Anghel AG, Grumezescu AM, Chirea M, Grumezescu V, Socol G, Iordache F, Oprea AE, Anghel I, Holban AM (2014) MAPLE fabricated Fe 3 O 4 @ cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes. Molecules 19(7):8981-8994
  1074. Holban AM, Grumezescu V, Grumezescu AM, Vasile BS, Trusca R, Cristescu R, Socol G, Iordache F (2014) Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J Nanotechnol 5:872-880
  1075. Vivero-Escoto JL, Huang YT (2011) Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 12(6):3888-3927
  1076. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7(1):22-39
  1077. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J (2011) Bioadhesive fi lm formed from a novel organic-inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm 79(3):574-583, http://dx.doi.org/10.1016/j.ejpb.2011.06.006
  1078. Nguyen TD (2013) Portraits of colloidal hybrid nanostructures: controlled synthesis and potential applications. Colloid Surf B 103:326-344
  1079. Rosu MC, Bratu I (2014) Promising psyllium-based composite containing TiO 2 nanoparticles as aspirin-carrier matrix. Prog Nat Sci-Mater 24(3):205-209
  1080. Yu S, Jeong SG, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energ Mat Sol C 120:549-554
  1081. Yoshioka T, Chávez-Valdez A, Roether JA, Schubert DW, Boccaccini AR (2013) AC elec- trophoretic deposition of organic-inorganic composite coatings. J Colloid Interface Sci 392:167-171, http://dx.doi.org/10.1016/j.jcis.2012.09.087
  1082. Bounor-Legaré V, Cassagnau P (2014) In situ synthesis of organic-inorganic hybrids or nanocomposites from sol-gel chemistry in molten polymers. Prog Polym Sci 39(8): 1473-1497, http://dx.doi.org/10.1016/j.progpolymsci.2014.04.003
  1083. Wang H, Chen D, Yu L, Chang M, Ci L (2015) One-step, room temperature, colorimetric melamine sensing using an in-situ formation of silver nanoparticles through modifi ed Tollens process. Spectrochim Acta A Mol Biomol Spectrosc 137:281-285, http://dx.doi. org/10.1016/j.saa.2014.08.041
  1084. Li X, Pang RZ, Li JS, Sun XY, Shen JY, Han WQ, Wang LJ (2013) In situ formation of Ag nanoparticles in PVDF ultrafi ltration membrane to mitigate organic and bacterial fouling. Desalination 324:48-56
  1085. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly L-lactide- layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polym Degrad Stabil 95(12):2563-2573
  1086. Fu PJ, Chen GM, Liu J, Yang JP (2009) An intercalated hybrid of polyacrylamide/layered double hydroxide prepared via in situ intercalative polymerization. Mater Lett 63(20): 1725-1728
  1087. Nogueira T, Botan R, Wypych F, Lona L (2011) Study of thermal and mechanical properties of PMMA/LDHs nanocomposites obtained by in situ bulk polymerization. Compos Part A-Appl S 42(8):1025-1030
  1088. Tran MK, Hassani LN, Calvignac B, Beuvier T, Hindre F, Boury F (2013) Lysozyme encap- sulation within PLGA and CaCO 3 microparticles using supercritical CO 2 medium. J Supercrit Fluid 79:159-169
  1089. Ma F, Zhou L, Tang J, Wei SH, Zhou YH, Zhou JH, Wang FB, Shen J (2012) A facile method for hemoglobin encapsulation in silica nanoparticles and application in biosensors. Micropor Mesopor Mat 160:106-113
  1090. Fujiwara M, Shiokawa K, Kubota T, Morigaki K (2014) Preparation of calcium carbonate microparticles containing organic fl uorescent molecules from vaterite. Adv Powder Technol 25(3):1147-1154
  1091. Catauro M, Papale F, Bollino F, Gallicchio M, Pacifi co S (2014) Biological evaluation of zirconia/PEG hybrid materials synthesized via sol-gel technique. Mater Sci Eng C 40: 253-259, http://dx.doi.org/10.1016/j.msec.2014.04.001
  1092. Zu L, Li R, Jin L, Lian H, Liu Y, Cui X (2014) Preparation and characterization of polypro- pylene/silica composite particle with interpenetrating network via hot emulsion sol-gel approach. Prog Nat Sci 24(1):42-49, http://dx.doi.org/10.1016/j.pnsc.2014.01.001
  1093. Wang HA, Bongio M, Farbod K, Nijhuis AWG, van den Beucken J, Boerman OC, van Hest JCM, Li YB, Jansen JA, Leeuwenburgh SCG (2014) Development of injectable organic/ inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater 10(1):508-519
  1094. Wang XX, Song XM, Lin M, Wang HT, Zhao YL, Zhong W, Du QG (2007) Surface initiated graft polymerization from carbon-doped TiO2 nanoparticles under sunlight illumination. Polymer 48(20):5834-5838
  1095. Bach LG, Islam MR, Kim JT, Seo S, Lim KT (2012) Encapsulation of Fe 3 O 4 magnetic nanoparticles with poly(methyl methacrylate) via surface functionalized thiol-lactam initi- ated radical polymerization. Appl Surf Sci 258(7):2959-2966
  1096. Liu P, Wang TM (2008) Poly(hydroethyl acrylate) grafted from ZnO nanoparticles via surface-initiated atom transfer radical polymerization. Curr Appl Phys 8(1):66-70
  1097. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V (2012) Surface modifi cation of TiO 2 nanoparticles with silane coupling agents. Colloid Surf A 413:273-279
  1098. Mallakpour S, Barati A (2011) Effi cient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modifi ed TiO 2 nanoparticles. Prog Org Coat 71(4):391-398
  1099. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modifi cation of TiO 2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222-228
  1100. Meng SW, Mansouri J, Ye Y, Chen V (2014) Effect of templating agents on the properties and membrane distillation performance of TiO 2 -coated PVDF membranes. J Membrane Sci 450:48-59
  1101. Crippa M, Callone E, D'Arienzo M, Müller K, Polizzi S, Wahba L, Morazzoni F, Scotti R (2011) TiO 2 nanocrystals grafted on macroporous silica: a novel hybrid organic-inorganic sol-gel approach for the synthesis of highly photoactive composite material. Appl Catal B Environ 104(3-4):282-290, http://dx.doi.org/10.1016/j.apcatb.2011.03.018
  1102. Stathatos E, Papoulis D, Aggelopoulos CA, Panagiotaras D, Nikolopoulou A (2012) TiO 2 / palygorskite composite nanocrystalline fi lms prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water. J Hazard Mater 211:68-76
  1103. Birjega R, Matei A, Mitu B, Ionita MD, Filipescu M, Stokker-Cheregi F, Luculescu C, Dinescu M, Zavoianu R, Pavel OD, Corobea MC (2013) Layered double hydroxides/polymer thin fi lms grown by matrix assisted pulsed laser evaporation. Thin Solid Films 543:63-68
  1104. Predoi D, Ciobanu CS, Radu M, Costache M, Dinischiotu A, Popescu C, Axente E, Mihailescu IN, Gyorgy E (2012) Hybrid dextran-iron oxide thin fi lms deposited by laser techniques for biomedical applications. Mat Sci Eng C-Mater 32(2):296-302
  1105. Paun IA, Moldovan A, Luculescu CR, Dinescu M (2013) Antibacterial polymeric coatings grown by matrix assisted pulsed laser evaporation. Appl Phys A-Mater 110(4):895-902
  1106. Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P (2009) Biofunctional alendronate-hydroxyapatite thin fi lms deposited by matrix assisted pulsed laser evaporation. Biomaterials 30(31):6168-6177, http://dx.doi.org/10.1016/ j.biomaterials.2009.07.066
  1107. Sima LE, Filimon A, Piticescu RM, Chitanu GC, Sufl et DM, Miroiu M, Socol G, Mihailescu IN, Neamtu J, Negroiu G (2009) Specifi c biofunctional performances of the hydroxyapatite- sodium maleate copolymer hybrid coating nanostructures evaluated by in vitro studies. J Mater Sci Mater Med 20(11):2305-2316. doi: 10.1007/s10856-009-3800-7
  1108. Ciobanu C, Iconaru S, Gyorgy E, Radu M, Costache M, Dinischiotu A, Le Coustumer P, Lafdi K, Predoi D (2012) Biomedical properties and preparation of iron oxide-dextran nano- structures by MAPLE technique. Chem Cent J 6(1):17
  1109. Brundtland G (1987) Our common future: report of the world commission on environment and development. Oxford University Press, Oxford
  1110. Gallopoulos NE (2006) Industrial ecology: an overview. Progr Ind Ecol 3(1-2):10-27
  1111. Eric Drexler K (1986) Engines of creation. Random House Inc, New York
  1112. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7 × 7 reconstruction on Si(111) resolved in real space. Phys Rev Lett 50:120-123
  1113. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120:109-129
  1114. Stamm H (2011) Risk factors: nanomaterials should be defi ned. Nature 476:399
  1115. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779-786
  1116. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res doi: 10.1021.ar300022
  1117. Shvedova AA, Kagan VE, Fadeel B (2010) Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 50:63-88
  1118. Hartung T (2009) Lessons learned from alternative methods and their validation for a new toxicology in the 21st century. J Toxicol Environ Health B Crit Rev 13(2-4):277-290
  1119. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 6:2-8
  1120. D. Nath nath_debjani@yahoo.co.in
  1121. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622-627
  1122. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Part fi bre. Toxicology 2:8
  1123. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafi ne particles. Environ Health Perspect 113:823-839
  1124. Xia T, Li N, Nel AE (2009) Annu Rev Public Health
  1125. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessi F, Castranova V, Thompson M (2009) Nat Mater 8:543-557
  1126. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Nano Lett 6:1794-1807
  1127. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Madler L, Nel AE (2010) ACS Nano 4:15-29
  1128. Li N, Xia T, Nel AE (2008) Free Radic Biol Med 44:1689-1699
  1129. Winkler DA, Mombelli E, Pietroiusti A (2013) Applying quantitative structure-activity relation- ship approaches to nanotoxicology: current status and future potential. Toxicol 313:15-23
  1130. Puzyn T, Rasulev B, Gajewicz A (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6(3):175-178
  1131. Epa VC, Burden FR, Tassa C, Weissleder R, Shaw S, Winkler DA (2012) Modelling biological activities of nanoparticles. Nano Lett 12:5808-5812
  1132. Le TC, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure-property relationship modelling of diverse materials properties. Chem Rev 112:2889-2919
  1133. Fourches D, Pu D, Tassa C (2010) Quantitative nanostructure-activity relationship modeling. ACS Nano 4(10):5703-5712
  1134. Eric W, Ayers R, Heller M (2002) The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ Sci Technol 36:5504-5510
  1135. Reuters (2007) HP claims advance in semiconductor nanotechnology reuters
  1136. Shadman F (2006) Environmental challenges and opportunities in nano-manufacturing. Paper presented at the green nanotechnology event hosted by the project on emerging nano- technologies at the Woodrow Wilson International Center for Scholars 26 Apr 2006
  1137. Anastas P, Warner J (1998) Green chemistry theory and practice. Oxford University Press, New York
  1138. McKenzie LC, Hutchison JE (2004) Green nanoscience: an integrated approach to greener products, processes, and applications. Chem Today 22:30-32
  1139. Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster fi lms for effi cient photocurrent generation. J Phys Chem B 107:12105-12112
  1140. Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn R (2001) Thin-fi lm thermoelectric devices with high room-temperature fi gures of merit. Nature 413:597-602
  1141. Lloyd SM, Lave LR (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Tech 37:3458-3466
  1142. Hahm JL, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:5154
  1143. Dahl JA, Maddux BLS, Hutchinson JE (2007) Towards greener nanosynthesis. Chem Rev 107:2228-2269
  1144. Chithrani RD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662-668
  1145. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166-1170
  1146. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121-1125
  1147. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417-432
  1148. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M (2006) Adverse effects of citrate/gold nanoparticles on human dermal fi broblasts. Small 2:766-773
  1149. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quan- tum dots. Nano Lett 4:11-18
  1150. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028-1033
  1151. Wiesner MR, Charackli GW (1998) Metals and colloids in urban runoff. In: Brejchova D (eds) Ann Arbor Press, Chelsea, MI
  1152. Weare WW, Reed SM, Hutchison JE, Warner MG (2000) Improved synthesis of small (dCORE″, 1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890-12891
  1153. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058-1062
  1154. Mafuné F, Kohno J, Takeda Y, Kondow T (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:225114-225120
  1155. Raffi M, Rumaiz AK, Hasan MM, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378-3384
  1156. Rosemary MJ, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thio- lates. J Colloid Interface Sci 268:81-84
  1157. Chaki NK, Sundrik SG, Sonawane HR, Vijayamohanan KJ (2002) Chem Soc Chem Commun 76
  1158. Shukla S, Seal S (1999) Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nano Struct Mater 11:1181-1193
  1159. Gleiter H (1989) Nan crystalline materials. Progr Mater Sci 33:223-315
  1160. Pérez-Tijerina E, Gracia-Pinilla MA, Mejía-Rosales S, Ortiz-Méndez U, Torres A, José- Yacamán M (2008) Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas con- densation. Faraday Discuss 138:353-362
  1161. Kang S, Kang MH, Lee E, Seo S, AhnFacile CWH (2011) Hetero-sized nanocluster array fabrication for investigating the nanostructure-dependence of nonvolatile memory character- istics. Nanotechnology 22:254018. doi: 10.1088/0957-4484/22/25/254018
  1162. Gacoin T, Malier L, Boilot JP (1997) Sol-gel transition in CdS colloids. Chem Mater 9:1502
  1163. Yuan Y, Fendler J, Cabasso I (1992) Preparation and characterization of stable aqueous higher-order fullerenes. Chem Mater 4:312
  1164. Sankaran V, Yue J, Cahen RE, Schrock RR, Silbey RJ (1993) Advanced drug delivery advices. Chem Mater 5:1133
  1165. Olshavsky MA, Allcock HR (1997) Small scale system for in-vivo drug delivery. Chem Mater 9:1367
  1166. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO 2 . Appl Catal B 69:138-144
  1167. Yang HG, Sun CH, Qiao SH, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO 2 single crystals with a large percentage of reactive facets. Nature 453:638-641
  1168. Tao AR, Habas Yang SP (2008) Shape control of colloidal metal nanocrystals. Small 4:310-325
  1169. Turkevitch J, Stevenson PC, Hillier J (1951) Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55-75
  1170. Frens G (1972) Particle size an d sol stability in metal colloids. Colloid Polym Sci 250:736-741
  1171. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver: a short topical review. Colloids Surf A Physicochem Eng Asp 202:175-186
  1172. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126-1131
  1173. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067-1084
  1174. D. Nath nath_debjani@yahoo.co.in
  1175. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132-140
  1176. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611-13614
  1177. Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48(6):592-600
  1178. Beveridge TJ, Murray RGJ (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127(3):1502-1518
  1179. Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527-4530
  1180. Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Gurunathan S (2009) Biosynthesis of gold nanocubes from Bacillus lichemiformis. Bioresour Technol 100:5356-5358
  1181. Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemen- tal silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090-7093
  1182. Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthes is of silver nanoparticles by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150-151
  1183. Kalathil S, Lee J, Cho MH (2011) Electrochemically active biofi lm-mediated synthesis of silver nanoparticles in water. Green Chem. doi: 10.1039/c1gc15309a
  1184. Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Lai B, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106:17757-17762
  1185. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984-3987
  1186. Sastry M, Ahmad A, Khan IM, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162-170
  1187. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313-318
  1188. Kaushik, P, Dhiman AK (2002) Medicinal plants and raw drugs of India, P.XII+623. Retrieved from http://www.vedicbooks.net/medicinal-plants-and-raw-drugs-of-india-p-886.html
  1189. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88-92
  1190. Kathiresan K, Manivannan S, Nabeel AM, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus Penicillum fellutanum isolated from coastal mangrove sedi- ment. Colloids Surf B Biointerfaces 71:133-137
  1191. Duran N, Marcato DP, Alves LO, De Souza G, Esposito E (2005) Mechanical aspect of biosyn- thesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 117 82. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23(13):7113-7117
  1192. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303-3305
  1193. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515-519
  1194. Absar A, Satyajyoti S, Khan MI, Rajiv K, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnnol 1:147-153
  1195. Bigall NC, Reitzig M, Naumann W, Simon P, van Pée KH, Eychmüller A (2008) Fungal templates for noble metal nanoparticles and their application in catalysis. Chem Int 47:7876-7879
  1196. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochem Acta Part A 73:374-381
  1197. Torresday JLG, Parsons JG, Gomez Videa EJP, Troian HE, Santiago IP, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfa alfa plants. Nanolett 2(4):397-401
  1198. Bali R, Razak N, Lumb A, Harris AT (2006) The synthesis of metal nanoparticles inside live plants. IEEE Xplore. doi: 10.1109/ICONN.2006.340592
  1199. Fahmy TYA, Mobarak F (2008) Vaccination of biological cellulose fi bers with glucose: a gateway to novel nanocomposites. Int J Biol Macromol 42(1):52
  1200. Fahmy TYA, Mobarak F (2011) Green nanotechnology: a short cut to benefi ciation of natural fi bers. Int J Biol Macromol 48(1):134
  1201. Parasar UK, Saxena PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4(1):159-166
  1202. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496-502
  1203. Tripathi A, Chandrasekaran NA, Raichur M, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5:93-98
  1204. Akimov AV, Neukirch AJ, Prezhdo OV (2013) Chem Rev 113:4496
  1205. Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269
  1206. Anderson NA, Lian T (2005) Annu Rev Phys Chem 56:491
  1207. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) J Am Chem Soc 126:4782
  1208. Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D, Batista VS, Lian T (2011) J Am Chem Soc 133:6922
  1209. Tang J, Durrant JR, Klug DR (2008) J Am Chem Soc 130:13885
  1210. Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, Schmuki P (2011) J Am Chem Soc 133:5629
  1211. Kamat PV (1993) Chem Rev 93:267
  1212. Zhu X (1994) Annu Rev Phys Chem 45:113
  1213. Jiang D, Zhao H, Zhang S, John R (2004) J Catal 223:212
  1214. Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439
  1215. Nitzan A, Ratner MA (2003) Science 300:1384
  1216. Fan F-RF, Yao Y, Cai L, Cheng L, Tour JM, Bard AJ (2004) J Am Chem Soc 126:4035 L. Wang et al. nath_debjani@yahoo.co.in
  1217. Naber WJM, Faez S, Wiel WGvd (2007) J Phys D Appl Phys 40:R205
  1218. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488
  1219. Furube A, Katoh R, Yoshihara T, Hara K, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:12583
  1220. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) J Am Chem Soc 129:14852
  1221. Shen YR (1989) Nature 337:519
  1222. Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu X-Y (2010) Science 328:1543
  1223. Tisdale WA, Zhu X-Y (2011) Proc Natl Acad Sci U S A 108:965
  1224. Tully JC (1990) J Chem Phys 93:1061
  1225. Tully JC (2012) J Chem Phys 137:22A301
  1226. Duncan WR, Prezhdo OV (2007) Annu Rev Phys Chem 58:143
  1227. Prezhdo OV, Duncan WR, Prezhdo VV (2008) Acc Chem Res 41:339
  1228. Prezhdo OV, Duncan WR, Prezhdo VV (2009) Prog Surf Sci 84:30
  1229. Prezhdo OV (2009) Acc Chem Res 42:2005
  1230. Hyeon-Deuk K, Prezhdo OV (2012) J Phys Condens Matter 24:363201
  1231. Sousa C, Tosoni S, Illas F (2012) Chem Rev 113:4456
  1232. Neukirch AJ, Hyeon-Deuk K, Prezhdo OV (2014) Coord Chem Rev 263-264:161
  1233. Ehrenfest P (1927) Z Physik 45:455
  1234. Prezhdo OV, Kisil VV (1997) Phys Rev A 56:162
  1235. Bornemann FA, Nettesheim P, Schütte C (1996) J Chem Phys 105:1074
  1236. Parandekar PV, Tully JC (2005) J Chem Phys 122:094102
  1237. Prezhdo O (2006) Theor Chem Acc 116:206
  1238. Wang L, Akimov AV, Chen L, Prezhdo OV (2013) J Chem Phys 139:174109
  1239. Drukker K (1999) J Comput Phys 153:225
  1240. Barbatti M (2011) WIREs Comput Mol Sci 1:620
  1241. Fabiano E, Keal TW, Thiel W (2008) Chem Phys 349:334
  1242. Evenhuis C, Martínez TJ (2011) J Chem Phys 135:224110
  1243. Granucci G, Persico M, Toniolo A (2001) J Chem Phys 114:10608
  1244. Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S (2012) J Chem Phys 137:014512
  1245. Wang L, Prezhdo OV (2014) J Phys Chem Lett 5:713
  1246. Wang L, Beljonne D (2013) J Phys Chem Lett 4:1888
  1247. Wang L, Beljonne D (2013) J Chem Phys 139:064316
  1248. Wang L, Trivedi D, Prezhdo OV (2014) J Chem Theory Comput 10:3598
  1249. Bittner ER, Rossky PJ (1995) J Chem Phys 103:8130
  1250. Hack MD, Truhlar DG (2001) J Chem Phys 114:9305
  1251. Bedard-Hearn MJ, Larsen RE, Schwartz BJ (2005) J Chem Phys 123:234106
  1252. Prezhdo OV (1999) J Chem Phys 111:8366
  1253. Jaeger HM, Fischer S, Prezhdo OV (2012) J Chem Phys 137:22A545
  1254. Akimov AV, Long R, Prezhdo OV (2014) J Chem Phys 140:194107
  1255. Young KF, Frederikse HPR (1973) J Phys Chem Ref Data 2:313
  1256. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L (2007) Chem Rev 107:926
  1257. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z (2010) Chem Soc Rev 39:423
  1258. Shuai Z, Wang L, Li Q (2011) Adv Mater 23:1145
  1259. Troisi A (2011) Chem Soc Rev 40:2347
  1260. Knupfer M (2003) Appl Phys A 77:623
  1261. Nayak PK (2013) Synt Met 174:42
  1262. Engel M, Kunze F, Lupascu DC, Benson N, Schmechel R (2012) Phys Status Solidi RRL 6:68
  1263. Long R, Prezhdo OV (2011) J Am Chem Soc 133:19240
  1264. Long R, English NJ, Prezhdo OV(2014) J Phys Chem Lett 5:2941
  1265. Tafen DN, Long R, Prezhdo OV (2014) Nano Lett 14:1790
  1266. Long R, English NJ, Prezhdo OV (2012) J Am Chem Soc 134:14238
  1267. Long R, English NJ, Prezhdo OV (2013) J Am Chem Soc 135:18892
  1268. Chaban VV, Prezhdo VV, Prezhdo OV (2013) J Phys Chem Lett 4:1
  1269. Zhu H, Yang Y, Hyeon-Deuk K, Califano M, Song N, Wang Y, Zhang W, Prezhdo OV, Lian T (2013) Nano Lett 14:1263
  1270. Long R, Prezhdo OV (2014) (in preparation)
  1271. Akimov AV, Prezhdo OV (2014) J Am Chem Soc 136:1599
  1272. Long R, Prezhdo OV (2014) Nano Lett 14:3335
  1273. Feynman RP (1948) Rev Mod Phys 20:367
  1274. Hohenberg P, Kohn W (1964) Phys Rev 136:B864
  1275. Kohn W, Sham LJ (1965) Phys Rev 140:A1133
  1276. Ziegler T (1991) Chem Rev 91:651
  1277. Runge E, Gross EKU (1984) Phys Rev Lett 52:997
  1278. Marques MAL, Gross EKU (2004) Annu Rev Phys Chem 55:427
  1279. Baer R, Neuhauser D (2004) J Chem Phys 121:9803
  1280. Tretiak S, Igumenshchev K, Chernyak V (2005) Phys Rev B 71:033201
  1281. Fischer SA, Habenicht BF, Madrid AB, Duncan WR, Prezhdo OV (2011) J Chem Phys 134:024102
  1282. Chernyak V, Mukamel S (2000) J Chem Phys 112:3572
  1283. Baer R (2002) Chem Phys Lett 364:75
  1284. Hu C, Hirai H, Sugino O (2007) J Chem Phys 127:064103
  1285. Tavernelli I, Tapavicza E, Rothlisberger U (2009) J Chem Phys 130:124107
  1286. Send R, Furche F (2010) J Chem Phys 132:044107
  1287. Hammes-Schiffer S, Tully JC (1994) J Chem Phys 101:4657
  1288. Craig CF, Duncan WR, Prezhdo OV (2005) Phys Rev Lett 95:163001
  1289. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212
  1290. Appel H, Gross EKU, Burke K (2003) Phys Rev Lett 90:043005
  1291. Prezhdo OV, Rossky PJ (1997) J Chem Phys 107:825
  1292. Neria E, Nitzan A (1993) J Chem Phys 99:1109
  1293. Akimov AV, Prezhdo OV (2013) J Chem Theory Comput 9:4959
  1294. Wang L, Beljonne D, Chen L, Shi Q (2011) J Chem Phys 134:244116
  1295. Neuhauser D, Lopata K (2008) J Chem Phys 129:134106
  1296. Meng S, Kaxiras E (2008) J Chem Phys 129:054110
  1297. Prezhdo OV, Pereverzev YV (2000) J Chem Phys 113:6557
  1298. Kilin DS, Pereversev YV, Prezhdo OV (2004) J Chem Phys 120:11209
  1299. Akimov AV, Prezhdo OV (2012) J Chem Phys 137:224115
  1300. Wang LJ, Peng Q, Li QK, Shuai Z (2007) J Chem Phys 127:044506
  1301. Wang LJ, Li QK, Shuai Z (2008) J Chem Phys 128:194706
  1302. Wang L, Li Q, Shuai Z, Chen L, Shi Q (2010) Phys Chem Chem Phys 12:3309
  1303. Cheng Y-C, Silbey RJ (2008) J Chem Phys 128:114713
  1304. Hannewald K, Bobbert PA (2004) Phys Rev B 69:075212
  1305. Fratini S, Ciuchi S (2003) Phys Rev Lett 91:256403
  1306. Berkelbach TC, Hybertsen MS, Reichman DR (2013) J Chem Phys 138:114102
  1307. Seidel W, Titkov A, André JP, Voisin P, Voos M (1994) Phys Rev Lett 73:2356
  1308. Hartmann T, Reineker P, Yudson VI (2011) Phys Rev B 84:245317
  1309. Sippel P, Albrecht W, Mitoraj D, Eichberger R, Hannappel T, Vanmaekelbergh D (2013) Nano Lett 13:1655
  1310. Lindblad G (1976) Commun Math Phys 48:119
  1311. Zurek WH (2003) Rev Mod Phys 75:715
  1312. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W (1987) Rev Mod Phys 59:1
  1313. Plenio MB, Knight PL (1998) Rev Mod Phys 70:101
  1314. Strunz WT (2001) Chem Phys 268:237
  1315. Diósi L, Strunz WT (1997) Phys Lett A 235:569
  1316. Akimov AV, Prezhdo OV (2014) J Chem Theory Comput 10:789
  1317. Trotter HF (1959) Proc Amer Math Soc 10:545
  1318. Paolo G et al (2009) J Phys Condens Matter 21:395502 L. Wang et al. nath_debjani@yahoo.co.in
  1319. Zhu H, Yang Y, Lian T (2012) Acc Chem Res 46:1270
  1320. Beard MC, Luther JM, Semonin OE, Nozik AJ (2012) Acc Chem Res 46:1252
  1321. Nozik AJ (2001) Annu Rev Phys Chem 52:193
  1322. Pandey A, Guyot-Sionnest P (2008) Science 322:929
  1323. Schaller RD, Klimov VI (2004) Phys Rev Lett 92:186601
  1324. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, Efros AL (2005) Nano Lett 5:865
  1325. McGuire JA, Joo J, Pietryga JM, Schaller RD, Klimov VI (2008) Acc Chem Res 41:1810
  1326. Shabaev A, Efros AL, Nozik AJ (2006) Nano Lett 6:2856
  1327. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu P, Mićić OI, Ellingson RJ, Nozik AJ (2006) J Am Chem Soc 128:3241
  1328. Madrid AB, Hyeon-Deuk K, Habenicht BF, Prezhdo OV (2009) ACS Nano 3:2487
  1329. Prezhdo OV (2008) Chem Phys Lett 460:1
  1330. Kilina SV, Kilin DS, Prezhdo OV (2008) ACS Nano 3:93
  1331. Wang L-W, Califano M, Zunger A, Franceschetti A (2003) Phys Rev Lett 91:056404
  1332. Franceschetti A, An JM, Zunger A (2006) Nano Lett 6:2191
  1333. Peterson JJ, Krauss TD (2006) Nano Lett 6:510
  1334. Kilina SV, Craig CF, Kilin DS, Prezhdo OV (2007) J Phys Chem C 111:4871
  1335. Schaller RD, Pietryga JM, Goupalov SV, Petruska MA, Ivanov SA, Klimov VI (2005) Phys Rev Lett 95:196401
  1336. Cooney RR, Sewall SL, Anderson KEH, Dias EA, Kambhampati P (2007) Phys Rev Lett 98:177403
  1337. Habenicht BF, Prezhdo OV (2008) Phys Rev Lett 100:197402
  1338. Prezhdo OV, Rossky PJ (1998) Phys Rev Lett 81:5294
  1339. Skinner JL (1988) Annu Rev Phys Chem 39:463
  1340. Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press
  1341. Salvador MR, Hines MA, Scholes GD (2003) J Chem Phys 118:9380
  1342. Isborn CM, Kilina SV, Li X, Prezhdo OV (2008) J Phys Chem C 112:18291
  1343. Hyeon-Deuk K, Prezhdo OV (2012) ACS Nano 6:1239
  1344. Luo J-W, Franceschetti A, Zunger A (2008) Nano Lett 8:3174
  1345. Rabani E, Baer R (2008) Nano Lett 8:4488
  1346. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735
  1347. Thompson TL, Yates JT (2006) Chem Rev 106:4428
  1348. Moser J, Graetzel M (1983) J Am Chem Soc 105:6547
  1349. O'Regan B, Gratzel M (1991) Nature 353:737
  1350. Bonnell DA (1998) Prog Surf Sci 57:187
  1351. Henrich VE (1995) Prog Surf Sci 50:77
  1352. Diebold U (2003) Surf Sci Rep 48:53
  1353. Stier W, Prezhdo OV (2002) Israel J Chem 42:213
  1354. Duncan WR, Prezhdo OV (2008) J Am Chem Soc 130:9756
  1355. Asbury JB, Anderson NA, Hao E, Ai X, Lian T (2003) J Phys Chem B 107:7376
  1356. McCusker JK (2003) Acc Chem Res 36:876
  1357. Henry W et al (2008) J Phys Chem A 112:4537
  1358. Duncan WR, Craig CF, Prezhdo OV (2007) J Am Chem Soc 129:8528
  1359. Stier W, Duncan WR, Prezhdo OV (2004) Adv Mater 16:240
  1360. Duncan WR, Stier WM, Prezhdo OV (2005) J Am Chem Soc 127:7941
  1361. Stier W, Prezhdo OV (2002) J Phys Chem B 106:8047
  1362. Warren DS, McQuillan AJ (2004) J Phys Chem B 108:19373
  1363. Panayotov DA, Yates JT Jr (2007) Chem Phys Lett 436:204
  1364. Ramakrishna S, Willig F, Knorr A (2004) Surf Sci 558:159
  1365. Prakash T (2012) Electron Mater Lett 8:231
  1366. Kohler A, dos Santos DA, Beljonne D, Shuai Z, Bredas JL, Holmes AB, Kraus A, Mullen K, Friend RH (1998) Nature 392:903
  1367. Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U (2012) Nano Lett 12:2095
  1368. Moon GD, Ko S, Xia Y, Jeong U (2010) ACS Nano 4:2307
  1369. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ (2011) ACS Nano 5:2647
  1370. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Phys Rev Lett 100:016602
  1371. Chen L, Wang L, Shuai Z, Beljonne D (2013) J Phys Chem Lett 4:2158
  1372. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487
  1373. Zhang H, Lv X, Li Y, Wang Y, Li J (2009) ACS Nano 4:380
  1374. Manga KK, Zhou Y, Yan Y, Loh KP (2009) Adv Funct Mater 19:3638
  1375. Wei HH-Y, Evans CM, Swartz BD, Neukirch AJ, Young J, Prezhdo OV, Krauss TD (2012) Nano Lett 12:4465
  1376. Inerbaev TM, Masunov AE, Khondaker SI, Dobrinescu A, Plamadă A-V, Kawazoe Y (2009) J Chem Phys 131:044106
  1377. Yang Y, Rodríguez-Córdoba W, Lian T (2011) J Am Chem Soc 133:9246
  1378. Bang JH, Kamat PV (2011) ACS Nano 5:9421
  1379. Marcus RA (1956) J Chem Phys 24:966
  1380. Marcus RA (1965) J Chem Phys 43:679
  1381. Brus LE (1983) J Chem Phys 79:5566. http://dx.doi.org/10.1063/1.445676
  1382. Caruso D, Troisi A (2012) PNAS
  1383. Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA (2013) J Phys Chem Lett 4:4253
  1384. Smith MB, Michl J (2010) Chem Rev 110:6891
  1385. Smith MB, Michl J (2013) Annu Rev Phys Chem 64:361
  1386. Beljonne D, Yamagata H, Brédas JL, Spano FC, Olivier Y (2013) Phys Rev Lett 110:226402
  1387. Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bässler H, Friend RH (2010) J Am Chem Soc 132:12698
  1388. Anthony JE (2010) Chem Mater 23:583
  1389. Stranks SD, Weisspfennig C, Parkinson P, Johnston MB, Herz LM, Nicholas RJ (2010) Nano Lett 11:66
  1390. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947
  1391. Koskinen P, Mäkinen V (2009) Comput Mater Sci 47:237 L. Wang et al.
  1392. National Nanotechnology Intiative. Nanotech facts: what is nanotechnology? http://www. nano.gov . Accessed 13 Jun 2013
  1393. Fleischer T, Grunwald A (2008) Making nanotechnology developments sustainable. A role for technology assessment? J Clean Prod 16:889-898
  1394. Mullaney M (2007) Beyond batteries: storing power in a sheet of paper. Rensselaer Polytechnic Institute, Troy, NY, http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php . Accessed 16 June 2013
  1395. G. Upreti et al.
  1396. Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193-212
  1397. Commission of European Communities (2004) Communication from the commission- towards a European strategy for nanotechnology. Brussels, Belgium, European Communities
  1398. Watlington K (2005) Emerging nanotechnologies for site remediation and wastewater treat- ment. EPA, Washington, DC
  1399. Sinha A, Suzuki K, Takahara M et al (2007) Mesostructured manganese oxide/gold nanopar- ticle composites for extensive air purifi cation. Angew Chem Int Ed Engl 46:2891-2894
  1400. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43-69
  1401. Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271-282
  1402. Lux Research: Nanotech in the Recession (2013) http://www.luxresearchinc.com/ blog/2009/07/nanotech-in-the-recession . Accessed 14 Jun 2013
  1403. Sengul H, Theis TL, Ghosh S (2008) Toward sustainable nanoproducts: an overview of nano- manufacturing methods. J Ind Ecol 12:329-359
  1404. Garner A, Keoleian GA (1995) Industrial ecology: an introduction. National Pollution Prevention Center for Higher Education, Ann Arbor, MI
  1405. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford
  1406. Curran MA, Frankl P, Heijungs R et al (2007) Nanotechnology and life cycle assessment-a systems approach to nanotechnology and the environment. Woodrow Wilson Center for Scholars, Washington, DC
  1407. Boccuni F, Rondinone B, Petyx C et al (2008) Potential occupational exposure to manufactured nanoparticles in Italy. J Clean Prod 16:949-956
  1408. Allenby BR, Rejeski D (2008) The industrial ecology of emerging technologies. J Ind Ecol 12:267-269
  1409. National Risk Management Research Laboratory (2006) Life cycle assessment: principles and practice. US EPA, Cincinnati, OH, EPA/600/R-06/060
  1410. Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the indus- trial manufacture and use of nanocomponents and their role in the life cycle impact of nano- products. Environ Sci Technol 43:1256-1263
  1411. Hischier R (2014) Life cycle assessment of manufactured nanomaterials: inventory modelling rules and application example. Int J Life Cycle Assess 19:941-943
  1412. Miseljic M, Olsen SI (2014) Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J Nanopart Res 16:2427
  1413. Khanna V, Bhavik B, Lee LJ (2007) Life cycle energy analysis and environmental life cycle assessment of carbon nanofi bers production. IEEE international symposium on electronics & the environment, Orlando, FL
  1414. Krishnan N, Boyd S, Somani A et al (2008) A hybrid life cycle inventory of nano-scale semi- conductor manufacturing. Environ Sci Technol 42:3069-3075
  1415. Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37:3458-3466
  1416. Lloyd SM, Lave LB, Matthews HS (2005) Life cycle benefi ts of using nanotechnology to sta- bilize platinum-group metal particles in automotive catalysts. Environ Sci Technol 39: 1384-1392
  1417. Osterwalder N, Capello C, Hungerbühler K et al (2006) Energy consumption during nanopar- ticle production: how economic is dry synthesis? J Nanopart Res 8:1-9
  1418. Roes A, Marsili E, Nieuwlaar E, Patel M (2007) Environmental and cost assessment of a poly- propylene nanocomposite. J Polym Environ 15:212-226
  1419. Gleich AV, Steinfeldt M, Petschow U (2008) A suggested three-tiered approach to assessing the implications of nanotechnology and infl uencing its development. J Clean Prod 16: 899-909
  1420. Bauer C, Buchgeister J, Hischier R et al (2008) Towards a framework for life cycle thinking in the assessment of nanotechnology. J Clean Prod 16:910-926
  1421. Köhler AR, Som C, Helland A et al (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16:927-937
  1422. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafi ne particles. Environ Health Perspect 113:823-839
  1423. Khanna V, Bakshi BR, Lee LJ (2008) Carbon nanofi ber production: life cycle energy con- sumption and environmental impact. J Ind Ecol 12:394-410
  1424. Kushnir D, Sanden BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12:360-375
  1425. Das S, Overly JG, Dhingra R et al (2002) Environmental evaluation of lightweight exterior body panels in new-generation vehicles. In Proceedings of the 2002 Future Car Congress, Arlington, VA, 3-5 June 2002, SAE Technical Paper Series. Society of Automotive Engineers, Warrendale, PA
  1426. Schexnayder SM, Das S, Dhingra R, Overly JG, Tonn BE, Peretz JH, Waidley G, Davis GA (2001) Environmental evaluation of new generation vehicles and vehicle components. Oak Ridge National Laboratory, Oak Ridge, TN
  1427. National Research Council (2000) Review of the research program of the partnership for a new generation of vehicles: sixth report. National Academy Press, Washington, DC
  1428. Sullivan J, Hu J (1995) Life cycle energy analysis for automobiles. In Proceedings of the 1995 total life cycle conference and exposition, Vienna, Austria, 16-19 October 2010. Society of Automotive Engineers, Detroit, MI
  1429. Dhingra R, Naidu S, Upreti G et al (2010) Sustainable nanotechnology: through green meth- ods and life-cycle thinking. Sustainability 2:3323-3338
  1430. Engineering toolbox. Elastic properties and Young modulus for some materials; Available online: http://www.engineeringtoolbox.com/young-modulus-d_417.html . Accessed 16 Sep 2013
  1431. Manoharan MP, Sharma A, Desai AV et al (2009) The interfacial strength of carbon nanofi ber epoxy composite using single fi ber pullout experiments. Nanotechnology 20:295701
  1432. Sun Y, Sun J, Liu M et al (2007) Mechanical strength of carbon nanotube-nickel nanocompos- ites. Nanotechnology 18:505704
  1433. Som C, Berges M, Chaudhry Q et al (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160-169
  1434. Berger M (2008) Nanotechnology-not that Green? Nanowerk LLC, Berlin, Available online: http://www.nanowerk.com/spotlight/spotid=7853.php . Accessed 16 Jun 2013
  1435. Naidu S, Sawhney R, Li X (2008) A methodology for evaluation and selection of nanoparticle manufacturing processes based on sustainability metrics. Environ Sci Technol 42:6697-6702
  1436. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395-402
  1437. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228-2269
  1438. Matthews HS, Lave L, MacLean H (2002) Life cycle impact assessment: a challenge for risk analysts. Risk Anal 22:853-860
  1439. US EPA. Risk assessment portal: human health risk assessment. http://www.epa.gov/ riskassessment/health-risk.htm . Accessed 16 Jun 2013
  1440. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies-a review. Toxicology 269:92-104
  1441. Olsen SI, Christensen FM, Hauschild M et al (2001) Life cycle impact assessment and risk assessment of chemicals-a methodological comparison. Environ Impact Assess Rev 21:385-404
  1442. Shatkin JA (2008) Nanotechnology: health and environmental risks. CRC Press, Boca Raton, FL, p 167
  1443. Davis JM (2007) How to assess the risks of nanotechnology: Learning from past experience. J Nanosci Nanotechnol 7:402-409
  1444. International Energy Agency (2011) World energy outlook 2011. International Energy Agency, Paris
  1445. WHO (2010) Progress on sanitation and drinking water. 2010 Update. World Health Organization and UNICEF, Geneva
  1446. Schmidt KF (2007) Green nanotechnology: it's easier than you think. Project on emerging nanotechnologies. Woodrow Wilson Center, Washington, DC
  1447. NSTC (1999) Nanotechnology research directions: vision for nanotechnology in the next decade. National Science and Technology Council, Committee on Technology, and the Interagency Working Group on Nanoscience, Engineering and Technology. Washington, DC. http://www.wtec.org/loyola/nano/IWGN.Research.Directions/ . Accessed August 17, 2014
  1448. ICCR (2010) Report of the ICCR Joint Ad Hoc Working Group on Nanotechnology in cos- metic products: criteria and methods of detection. International Cooperation on Cosmetic Regulation initiative (ICCR-4), Toronto, ON
  1449. Klaessig F, Marrapese M, Abe S (2011) Current perspectives in nanotechnology terminology and nomenclature. In: Murashov V, Howard J (eds) Nanotechnology standards. Springer, New York, NY, pp 21-52
  1450. Porter AL, Youtie J, Shapira P, Schoeneck D (2008) Refi ning search terms for nanotechnology. J Nanopart Res 10(5):715-728
  1451. Zitt M, Bassecoulard E (2006) Delineating complex scientifi c fi elds by a hybrid lexical- citation method: an application to nanosciences. Inform Process Manag 42(3):1513-1531
  1452. Porter AL, Youtie J (2009) How interdisciplinary is nanotechnology? J Nanopart Res 11(5):1023-1041
  1453. Porter AL, Youtie J (2009) Where does nanotechnology belong in the map of science? Nat Nanotechnol 4:534-536, September
  1454. Youtie J, Iacopetta M, Graham S (2008) Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology? J Tech Transfer 33(3):315-329
  1455. Shapira P, Youtie J (2011) Nanotechnology innovation and policy: current strategies and future trajectories. J Tech Transfer 36(6):581-586
  1456. OECD (2011a) Towards green growth. Organisation for Economic Cooperation and Development, Paris. http://www.oecd.org/dataoecd/37/34/48224539.pdf . Accessed August 17, 2014 P. Shapira and J. Youtie nath_debjani@yahoo.co.in
  1457. National Development Plan (2007) Transforming Ireland: a better quality of life for all. Pn. A7/0004. The Stationary Offi ce, Dublin
  1458. Jones RS, Yoo B (2011) Korea's green growth strategy: mitigating climate change and devel- oping new growth engines. OECD Economics Department Working Papers, No. 798, DOI: 10.1787/5kmbhk4gh1ns-en
  1459. OECD (2011b) Towards green growth: monitoring progress. OECD indicators. Organisation for Economic Cooperation and Development, Paris. http://www.oecd.org/datao- ecd/37/33/48224574.pdf . Accessed February 12, 2012
  1460. BLS (2011) The BLS green jobs defi nition. US Bureau of Labor Statistics, Washington, DC. http://www.bls.gov/green/green_defi nition.pdf . Accessed December 10, 2011
  1461. UNEP (2008) Green jobs: towards decent work in a sustainable, low-carbon world. UNEP, ILO, IOE, and ITUC http://www.unep.org/PDF/UNEPGreenjobs_report08.pdf . Accessed November 28, 2014
  1462. Martinez-Fernandez C, Hinojosa C, Miranda G (2010) Green jobs and skills: the local labour market implications of addressing climate change. Working document, CFE/LEED, OECD http://www.oecd.org/cfe/leed/44683169.pdf . Accessed November 28, 2014
  1463. USPTO (2009) Pilot program for green technologies including greenhouse gas reduction. Fed Reg 74(234): pp 64666-64699, December 8. www.uspto.gov/patents/law/notices/74fr64666. pdf . Accessed November 28, 2014
  1464. WIPO (2012) IPC Green Inventory. World Intellectual Property Offi ce. http://www.wipo.int/ classifi cations/ipc/en/est/index.html . Accessed August 17, 2014
  1465. Thomson Reuters (2012) Green technology manual codes. Derwent World Patents Index. http://ip.thomsonreuters.com/dwpi_greencodes . Accessed August 17, 2014
  1466. Strumsky D, Lobo J (2011) How green is my nano? Evidence from USPTO patents. Conference presentation at S. Net Conference, Tempe, AR, November
  1467. Lux Research (2007) The Nanotech Report 2006: investment overview and market research for nanotechnology. Lux Research, New York, NY
  1468. NSET (2011) National nanotechnology initiative strategic plan, 2011. Nanoscale Science, Engineering and Technology Subcommittee, Committee on Technology, National Science and Technology Council, Washington, DC. http://www.nano.gov/sites/default/fi les/pub_ resource/2011_strategic_plan.pdf . Accessed August 17, 2014
  1469. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, Berlin
  1470. Organic electronics association (2009) OE -a roadmap for organic and printed electronics, 3rd edn. Organic Electronics Association, Frankfurt, Germany
  1471. Wang ZL (2008) Towards self-powered nanosystems: from nanogenerators to nanopiezo- tronic. Adv Funct Mater 18:3553-3567
  1472. Simonite T (2007) Nanotube tangles power printable batteries. New Scientist. November 16
  1473. Berger M (2008) Nanotechnology is key to improving fuel cell performance. Nanowerk, October 31
  1474. Brinker J, Ginger D (2011) Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Roco MC, Mirkin CA, Hersam MC (eds) Nanotechnology research direc- tions for societal needs in 2020: retrospective and outlook. Springer, Berlin
  1475. Davis M (2010) Nanotechnology in catalysis: a decade of progress and into the future. NSF Grantees Conference 2010, Arlington VA, December 6-8
  1476. Hu E, Davis M, David R, Scher E (2011) Applications: catalysis by nanostructured materials. In: Roco MC, Mirkin CA, Hersam MC (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, Berlin
  1477. OECD (2011c) Fostering nanotechnology to address global challenges: water. Organisation for economic cooperation and development, Paris. http://www.oecd.org/dataoecd/22/58/47601818. pdf . Accessed February 19, 2012
  1478. Diallo M, Brinker J (2011) Nanotechnology for sustainability: environment, water, food, min- erals, and climate. In: Roco MC, Mirkin CA, Hersam MC (eds) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, Berlin
  1479. Müller N, Nowack B, Oy S, Saari D (2010) Briefi ng No. 2: Environment -photocatalysis for water. ObservatoryNANO August 2010. Available at: http://www.sswm.info/sites/default/ fi les/reference_attachments/MULLER%20et%20al%202010%20Photocatalysis%20for%20 Water%20Treatment.pdf . Accessed November 28, 2014
  1480. Roco M, Bainbridge W (2001) Societal implications of nanoscience and nanotechnology. Springer, Berlin
  1481. Berger M (2007) Debunking the trillion dollar nanotechnology market size hype. Nanowerk, April 18
  1482. Lux Research (2005) Sizing nanotechnology's value chain. Lux Research Inc., Boston, MA
  1483. Lux Research (2010) The recession's impact on nanotechnology. Lux Research Inc., Boston, MA
  1484. Cientifi ca (2007) Half way to the trillion dollar market. In: Berger M (ed.), Debunking the trillion dollar nanotechnology market size hype, Nanowerk, April 18, 2007. http://www. nanowerk.com/spotlight/spotid=1792.php . Accessed March 7, 2012
  1485. BCC Research (2009) Nanotechnology: a realistic market assessment. BCC Research, Wellesley, MA
  1486. Global Industry Analysts (2012) Nanotechnology: a global industry outlook. Global Industry Analysts, San Jose, CA
  1487. Bullis K (2012) The Chinese solar machine. Technol Rev 115(1):46-49
  1488. Nanomarkets (2008) NanoMarkets issues new report on organic photovoltaic markets, PR Newswire, May 7
  1489. Nanomarkets (2010a) Organic and dye-sensitized cell photovoltaics: materials, applications and opportunities 2010, Nanomarkets, Glen Allen, VA, May 13. Summary available at http:// www.reportlinker.com/p0397475-summary/Organic-and-Dye-Sensitized-Cell-Photovoltaics- Materials-Applications-and-Opportunities.html . Accessed November 28, 2014
  1490. Solar Novus Today (2011) Organic photovoltaics market to increase six-fold. April 27. http:// www.solarnovus.com/index.php?option=com_content&view=article&id=2699:organic- photovoltaics-market-to-increase-six-fold&catid=37:business-news&Itemid=241 . Accessed February 12, 2012
  1491. Energy Weekly News (2011) Lux Research; Organic photovoltaic markets fall short of expec- tations, May 6, 176
  1492. Nanomarkets (2009) NanoMarkets report shows where thin-fi lm batteries will generate reve- nues, PR Newswire, May 7
  1493. Nanomarkets (2010b) Thin-fi lm and printable batteries: strategies for the future. Summary available at: http://nanomarkets.net/blog/article/thin-fi lm_and_printable_batteries_strategies_ for_the_future . Accessed November 28, 2014
  1494. BCC Research (2013) Aerogels. AVM052C. BCC Research, Wellesley, MA
  1495. Bax L (2010) Construction -nano-enabled insulation materials, Briefi ng No. 3 ObservatoryNANO August 2010 http://bwcv.es/assets/2011/1/12/ObservatoryNANO_ Briefi ng_No.3_Nano-Enabled_Insulation_Materials.pdf . Accessed November 28, 2014
  1496. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purifi cation in the coming decades. Nature 252(20):301-310
  1497. Pasta M, Wessells CD, Cui Y, La Mantia F (2012) A desalination battery. Nano Lett 12(2):839-843
  1498. Invernizzi N (2011) Nanotechnology between the lab and the shop fl oor: what are the effects on labor? J Nanopart Res 13:2249-2268
  1499. Chapple K (2008) Defi ning the green economy: a primer on green economic development. Center for Community Innovation, University of California, Berkeley, CA. http://community- innovation.berkeley.edu/reports/Chapple%20-%20Defi ning%20the%20Green%20Economy. pdf . Accessed March 7, 2012
  1500. Tassey G (2003) Methods for assessing the economic impacts of government R&D, planning report 03-1. National Institute of Standards and Technology, Gaithersburg, MD
  1501. Shapira P, Wang J (2010) Follow the money. What was the impact of the nanotechnology funding boom of the past ten years? Nature 469:627-628
  1502. P. Shapira and J. Youtie nath_debjani@yahoo.co.in
  1503. Walsh B, Willis P, MacGregor A (2010) A comparative methodology for estimating the economic value of innovation in nanotechnologies. A report for DEFRA. Oakdene Hollins, Aylesbury, UK
  1504. European Commission (2010) International Reference Life Cycle Data System (ILCD) hand- book, General guide for life cycle assessment -detailed guidance. Joint Research Centre, Institute of Environment and Sustainability, Publications Offi ce of the European Union, Luxembourg
  1505. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suh S, Weidema BP, Pennington DW (2004) Life cycle assessment -Part 1: framework, goal and scope defi nition, inventory analysis, and applications. Environ Int 30(5):701-720
  1506. Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91(1):1-21
  1507. Isaacs JA, Tanwani A, Healy ML (2006) Environmental assessment of SWNT production. Electronics and the environment, 2006. Proceedings of the 2006 IEEE international sympo- sium on electronics and the environment, Scottsdale, AZ, May 8-11, pp 38-41. DOI: 10.1109/ ISEE.2006.1650028
  1508. Agboola AE, Pike RW, Hertwig TA, Lou HH (2007) Conceptual design of carbon nanotube processes. Clean Tech Environ Policy 9(4):289-311
  1509. Gutowski TG, Liow JYH, Sekulic DP (2010) Minimum exergy requirements for the manufac- turing of carbon nanotubes. IEEE International Symposium on Sustainable Systems and Technologies, Washington, DC, May 16-19
  1510. Wender BA, Seager TP (2011) Towards prospective life cycle assessment: single carbon nano- tubes for lithium-ion batteries. 2011 IEEE International Symposium on Sustainable Systems and Technology (ISSST), Chicago, IL, May 16-18. DOI: 10.1109/ISSST.2011.5936889
  1511. Aitken RJ, Creely KS, Tran CL (2004) Nanoparticles: an occupational hygiene review, research report 274. Institute of Occupational Medicine, Edinburgh
  1512. Schulte PA, Trout D, Zumwalde RD, Kuempel E, Geraci CL, Castranova V, Mundt DJ, Mundt KA, Halperin WE (2008) Options for occupational health surveillance of workers potentially exposed to engineered nanoparticles: state of the science. J Occup Environ Med 50(5):517-526
  1513. Murashov V, Howard J (2011) Health and safety standards. In: Murashov V, Howard J (eds) Nanotechnology standards. Springer, New York, NY, pp 209-238
  1514. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Tech 39(5):1291-1298
  1515. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of envi- ronmental pollutants: materials and engineering aspects. Crit Rev Sol State Mater Sci 31(4):111-122
  1516. Müller N, Nowack B (2010) Nano zero valent iron -the solution for water and soil remedia- tion? ObservatoryNANO Focus report 2010. Available at: https://www.yumpu.com/en/docu- ment/view/6104945/nano-zero-valent-iron-the-solution-for-water-and-soil-remediation . Accessed November 28, 2014
  1517. Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society and the Royal Academy of Engineering, London
  1518. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefi ts and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitiga- tion or trade-off? J Contam Hydrol 118(3-4):165-183
  1519. Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in micro- bial toxicity. Environ Sci Tech 42(24):9424-9430
  1520. Botrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47(25):7039-7050
  1521. Williams A (2011) Cadmium-free quantum dot fi rm wins major LED lighting deal. ElectronicsWeekly.com, December 14. http://www.electronicsweekly.com/blogs/led- lights/2011/12/cadmium-free-quantum-dot-fi rm-wins-major-led-lighting-deal.html . Accessed August 17, 2014
  1522. Lloyd's Emerging Risks Team (2007) Nanotechnology: recent developments, risks, and opportunities. Lloyd's, London
  1523. Kingdollar C (2011) Nanotechnology -the smallest and biggest emerging issue facing casualty insurers? Gen Re. Research, Stamford, CT
  1524. OECD (2011a) OECD Working Party on Nanotechnology. http://www.oecd.org/science/ sci-tech/oecdworkingpartyonnanotechnology.htm . Accessed November 28, 2014
  1525. OECD (2011b) OECD Working Party on Manufactured Nanomaterials. http://www.oecd.org/ env/ehs/nanosafety . Accessed November 28, 2014
  1526. IRGC (2007) Nanotechnology risk governance. Policy brief. International Risk Governance Council, Geneva
  1527. Pelley J, Saner M (2009) International approaches to the regulatory governance of nanotech- nology. Carleton University, School of Public Policy and Administration, Ottawa, ON
  1528. Jayanthi AP, Beumer K, Bhattacharya S (2012) Nanotechnology: "Risk Governance" in India. Economic and Political Weekly, XLVII, 4, January 28, 34-40
  1529. Gruère G, Narrod C, Abbott L (2011) Agriculture, food and water nanotechnologies for the poor: opportunities and constraints. IFPRI policy brief 19. International Food Policy Research Institute, Washington, DC
  1530. Karinen R, Guston DH (2010) Toward anticipatory governance: the experience with nano- technology. In: Kaiser M, Kurath M, Maasen S, Rehmann-Sutter C (eds) Governing future technologies: nanotechnology and the rise of an assessment regime. Springer, Dordrecht, The Netherlands, pp 217-232
  1531. Suttcliffe H (2012) A report on responsible research & innovation. Matter, London. Available at: http://ec.europa.eu/research/science-society/document_library/pdf_06/rri-report-hilary- sutcliffe_en.pdf . Accessed March 28, 2014
  1532. Martin BR, Tang P (2007) The benefi ts from publicly-funded research. SPRU Electronic Working Paper Series, No. 161. http://www.sussex.ac.uk/spru/documents/sewp161.pdf . Accessed November 28, 2014