Academia.eduAcademia.edu

Outline

‘Green Nanomaterial’-How Green they are as Biotherapeutic Tool

2014, Journal of Nanomedicine & Biotherapeutic Discovery

https://doi.org/10.4172/2155-983X.1000125

Abstract

The emergence of nanoparticles (NPs) has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas, including drug delivery and therapy. These opportunities are based on the unique properties (e.g., magnetic, optical, mechanical, and electronic) that vary continuously or abruptly with changes in the size of the materials at the nanoscale. Advances in nanotechnology have significantly impacted the field of therapeutics delivery. Although the impressive progress made in the design of disease-targeted NPs allows new treatments with improved specificity, only a few NP-based medicines have reached the market. There is a need for a new discipline-nanotoxicology-that would evaluate the health threats posed by nanoparticles, and would enable safe development of the emerging nanotechnology industry related to biotherapy. Green Nanotechnology gives the opportunity in lowering the risk of using nanomaterials, limiting the risk of producing nanomaterials, and using nanomaterials to lower the risk of producing unwanted chemical intermediates and end-products.

References (73)

  1. McKenzie LC, Hutchison JE (2004) Green nanoscience: An integrated ap- proach to greener products, processes, and applications, Chimica Oggi, Chem- istry Today.
  2. Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107: 2228-2269.
  3. Schmidt KF (2007) Green nanotechnology. Published by Woodraw Wilson In- ternational center for scholars.
  4. Hutchison JE (2008) Greener nanoscience: a proactive approach to advanc- ing applications and reducing implications of nanotechnology. ACS Nano 2: 395-402.
  5. Rugar D, Hansma P (1990) Atomic force microscopy. Phys. Today, 23-30.
  6. Binnig G, Rohrer H, Gerber C, Weibel E (1983) 7×7 Reconstruction on Si(111) Resolved in Real Space Rev. Lett, 50: 120-123.
  7. Diallo M, Brinker CJ (2011) Nanotechnology for Sustainability: Environment, Water, Food, And Climate. In Nanotechnology Research Directions for Societal Needs in 2020, 1: 221-259.
  8. Roco M (2003) Broader societal issues of nanotechnology J. Nanopart. Res, 5: 181-189.
  9. Barbara K, Stanislaus SW (2013) Ten Years of Green Nanotechnology In Sus- tainable Nanotechnology and the Environment: Advances and Achievements. ACS Symposium Series; American Chemical Society: Washington, DC 1124: 1-10.
  10. Anastas P, Warner J (1998) Green Chemistry: Theory and Practice; Oxford University Press: New York.
  11. Andrew M (2005) A Nanotechnology Consumer Products InVentory, Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars.
  12. Kamat PV, Huehn R, Nicolaescu R (2002) J. Phys. Chem. B, 106: 788.
  13. Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) J. Phys. Chem. B, 107: 12105.
  14. Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B (2001) Thin-film ther- moelectric devices with high room-temperature figures of merit. Nature 413: 597-602.
  15. Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37: 3458-3466.
  16. Hahm JI, Lieber CM (2004) Nano Lett, 4: 51.
  17. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5: 709-711.
  18. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200: 83-104.
  19. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carri- ers. Nat Rev Drug Discov 4: 145-160.
  20. Moghimi, SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein- binding properties. Prog. Lipid Res. 42: 463-478
  21. Kaiden T, Yuba E, Harada A, Sakanishi Y, Kono K (2011) Dual signal-respon- sive liposomes for temperature-controlled cytoplasmic delivery. Bioconjug Chem 22: 1909-1915.
  22. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, func- tionalization strategies and biomedical applications of targeted biodegradable/ biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42: 1147-1235.
  23. Du J, Tang L, Yuan Y, Wang J (2011) Phosphoester modified poly (ethyleni- mine) as efficient and low cytotoxic genevectors. Sci China Chem, 54: 351-358
  24. Xu X, Li C, Li H, Liu R, Jiang C, et al. (2011) Polypeptide dendrimers: Self- assembly and drug delivery. Sci China Chem, 54: 326-333
  25. Xu R, Lu ZR (2011) Design, synthesis and evaluation of spermine-based ph- sensitive amphiphilic gene delivery systems: Multifunctional non-viral gene car- riers. Sci China Chem, 54: 359-368
  26. Du JZ, Du XJ, Mao CQ, Wang J (2011) Tailor-made dual pH-sensitive polymer- doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133: 17560-17563.
  27. Kam NW, O'Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multi- functional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102: 11600-11605.
  28. Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, et al. (2006) Delivery of telom- erase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Can- cer Res 12: 4933-4939.
  29. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24: 1211-1217.
  30. Emerich DF, Thanos CG (2007) Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 15: 163-183.
  31. Noble CO, Kirpotin DB, Hayes ME, Mamot C, Hong K, et al. (2004) Develop- ment of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Tar- gets 8: 335-353.
  32. Andrew ZW, Frank G, Zhang L, Chan JM, Radovic-Moreno A, et al. (2008) Biofunctionalized Targeted Nanoparticles for Therapeutic Applications Expert Volume 4 • Issue 2 • 1000125
  33. J Nanomedine Biotherapeutic Discov ISSN: 2155-983X JNBD an open access journal Opin Biol Ther. 8: 1063-1070.
  34. Groneberg DA, Giersig M, Welte T, Pison U (2006) Nanoparticle-based diagno- sis and therapy. Curr Drug Targets 7: 643-648.
  35. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles -known and un- known health risks. J Nanobiotechnology 2: 12.
  36. Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CDW, Curtis ASG (2004) Cel- lular response to low adhesion nanotopographies Int. J. Biochem. Cell Biol. 36: 2005-2015
  37. Cousins BG, Doherty PJ, Williams RL, Fink J, Garvey MJ (2004) The effect of silica nanoparticulate coatings on cellular response. J Mater Sci Mater Med 15: 355-359.
  38. Kasemo B (2002) Biological surface science Surf. Sci, 500: 656-677
  39. Liu SQ, Xu JJ, Chen HY (2004) A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application. Colloids Surf B Bioin- terfaces 36: 155-159.
  40. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, et al. (2004) Biomimetics: Advancing Nanobiomaterials and Tissue Engineering Cells Tis- sues Organs, 178: 13-22.
  41. Smith LA, Ma PX (2004) Nano-structured polymer scaffolds for tissue engineer- ing and regenerative medicine Colloids Surf, 39: 125-131.
  42. Sharma S, Johnson RW, Desai TA (2004) XPS and AFM analysis of antifoul- ing PEG interfaces for microfabricated silicon biosensors. Biosens Bioelectron 20: 227-239.
  43. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823-839.
  44. Maynard D, Baron PA, Foley M, Shvedova AA, Kisin ER, et al. (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single- walled carbon nanotube material.J. Toxicol. Environ. Health A, 67: 87-107.
  45. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, et al. (2006) Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Com- mun (Camb) : 1182-1184.
  46. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, et al. (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1: 176-182.
  47. Hoet PH, Nemmar A, Nemery B (2004) Health impact of nanomaterials? Nat Biotechnol 22: 19.
  48. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, et al. (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77: 117-125.
  49. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instilla- tion. Toxicol Sci 77: 126-134.
  50. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155: 73-85.
  51. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155: 377-384.
  52. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instilla- tion. Toxicol Sci 77: 126-134.
  53. Jia G, Wang H, Yan L, Wang X, Pei R, et al. (2005) Cytotoxicity of carbon nano- materials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39: 1378-1383.
  54. Shi Kam NW, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular trans- porters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 126: 6850-6851.
  55. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto- toxicity caused by quantum dots. Microbiol Immunol 48: 669-675.
  56. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, et al. (2004) Physicochemi- cal Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification Nano Lett., 4: 2163-2169.
  57. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, et al. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538-544.
  58. Jia X, Li N, Chen J (2005) A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci 76: 1989-2003.
  59. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, et al. (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207: 221-231.
  60. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823-839.
  61. Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res 553: 5-9.
  62. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bron- chial epithelial cells. Toxicology 213: 66-73.
  63. Service RF (2003) American Chemical Society meeting. Nanomaterials show signs of toxicity. Science 300: 243.
  64. Churg A, Stevens B, Wright JL (1998) Sustainable Preparation of Metal Nanoparticles: Methods and Applications Am. J. Physiol. Lung Cell. Mol. Physi- ol, 274: L81-L86.
  65. Donaldson K, Beswick PH, Gilmour PS (1996) Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88: 293-298.
  66. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15: 897-900.
  67. Rancan F, Rosan S, Boehm F, Cantrell A, Brellreich M, et al. (2002) Cytotoxic- ity and photocytotoxicity of a dendritic C(60) mono-adduct and a malonic acid C(60) tris-adduct on Jurkat cells. J Photochem Photobiol B 67: 157-162.
  68. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, et al. (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Com- mun 294: 116-119.
  69. Yang XL, Fan CH, Zhu HS (2002) Photo-induced cytotoxicity of malonic acid [C(60)]fullerene derivatives and its mechanism. Toxicol In Vitro 16: 41-46.
  70. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, et al. (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39: 4307-4316.
  71. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, et al. (2004) The Differential Cytotoxicity of Water-Soluble Fullerenes Nano Lett, 4: 1881-1887.
  72. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass Environ. Health Per- spect, 112: 1058-1062.
  73. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake en- hancement of surface modified magnetic nanoparticles. Biomaterials 26: 1565- 1573.