Academia.eduAcademia.edu

Outline

Human mobility: Models and applications

Physics Reports

https://doi.org/10.1016/J.PHYSREP.2018.01.001

Abstract

Recent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between shortrange and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.

References (409)

  1. E. L. Ullman, Geography as spatial interaction, in: R. R. Boyce (Ed.), Geogra- phy as Spatial Interaction, University of Washington Press, 1980, pp. 13-27.
  2. M. Helvig, Chicago's External Truck Movements; Spatial Interactions Between the Chicago Area and Its Hinterland, Department of Geography, University of Chicago, 1964.
  3. D. E. Boyce, H. C. W. L. Williams, Forecasting Urban Travel: Past, Present and Future, Edward Elgar Publishing, 2015.
  4. W. J. Reilly, Methods for the Study of Retail Relationships, University of Texas, 1929.
  5. S. A. Stouffer, Intervening opportunities: A theory relating mobility and dis- tance, American Sociological Review 5 (6) (1940) 845-867.
  6. G. K. Zipf, The P1 P2/D Hypothesis: On the Intercity Movement of Persons, American Sociological Review 11 (6) (1946) 677-686.
  7. T. R. Anderson, Intermetropolitan migration: a comparison of the hypotheses of zipf and stouffer, American Sociological Review 11 (1955) 287-291.
  8. S. Hanson, The importance of the multi-purpose journey to work in urban travel behavior, Transportation 9 (3) (1980) 229-248.
  9. J. O. Huff, S. Hanson, Repetition and variability in urban travel, Geographical Analysis 18 (2) (1986) 97-114.
  10. R. Kitamura, C. Chen, R. M. Pendyala, R. Narayanan, Micro-simulation of daily activity-travel patterns for travel demand forecasting, Transportation 27 (1) (2000) 25-51.
  11. C. Bhat, J. Guo, S. Srinivasan, A. Sivakumar, Comprehensive econometric mi- crosimulator for daily activity-travel patterns, Transportation Research Record 1894 (1) (2004) 57-66.
  12. R. M. Pendyala, R. Kitamura, A. Kikuchi, T. Yamamoto, S. Fujii, Florida activ- ity mobility simulator: overview and preliminary validation results, Transporta- tion Research Record: Journal of the Transportation Research Board 1921 (1) (2005) 123-130.
  13. K. Nagel, M. Paczuski, Emergent traffic jams, Physical Review E 51 (4) (1995) 2909.
  14. P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, M. C. González, Understand- ing road usage patterns in urban areas, Scientific reports 2 (2012) 1001.
  15. B. Hillier, A. Turner, T. Yang, H.-T. Park, Metric and topo-geometric proper- ties of urban street networks: some convergences, divergences and new results, Journal of Space Syntax Studies 1 (2009) 258-279.
  16. V. E. Krebs, Mapping networks of terrorist cells, Connections 24 (3) (2002) 43-52.
  17. A. Clauset, L. Heger, M. Young, K. S. Gleditsch, The strategic calculus of terror- ism: Substitution and competition in the israel-palestine conflict, Cooperation and Conflict 45 (1) (2010) 6-33.
  18. V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron, A. Vespignani, Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions, PLoS medicine 4 (1) (2007) e13.
  19. A. Vespignani, Modelling dynamical processes in complex socio-technical sys- tems, Nature Physics 8 (2012) 32-39.
  20. M. Tizzoni, P. Bajardi, A. Decuyper, G. Kon Kam King, C. M. Schneider, V. Blondel, Z. Smoreda, M. C. González, V. Colizza, On the use of human mo- bility proxies for modeling epidemics, PLoS Computational Biology 10 (2014) e1003716.
  21. G. Olsson, Distance and Human Interaction: A Review and Bibliography, Re- gional Science Research Institute, Philadelphia, 1965.
  22. E. G. Ravenstein, The laws of migration, Journal of the Statistical Society of London 48 (1885) 167-235.
  23. M. L. Bright, D. S. Thomas, Interstate migration and intervening opportunities, American Sociological Review 6 (6) (1941) 846-847.
  24. F. K. Schaefer, Exceptionalism in Geography: A Methodological Examination, Annals of the Association of American Geographers 43 (3) (1953) 226-249.
  25. B. J. L. Berry, Geography's Quantitative Revolution: Initial Conditions, 1954- 1960. a Personal Memoir, Urban Geography 14 (5) (1993) 434-441.
  26. J. S. Adams, The Quantitative Revolution in Urban Geography, Urban Geogra- phy 22 (6) (2001) 530-539.
  27. J. A. Ericksen, An analysis of the journey to work for women, Social Problems 24 (4) (1977) 428-435.
  28. S. Hanson, P. Hanson, The travel-activity patterns of urban residents: Dimen- sions and relationships to sociodemographic characteristics, Economic Geogra- phy 57 (4) (1981) 332-347.
  29. S. Hanson, I. Johnston, Gender differences in work-trip length: Explanations and implications, Urban Geography 6 (3) (1985) 193-219.
  30. R. Jennissen, Causality chains in the international migration systems approach, Population Research and Policy Review 26 (2007) 411.
  31. S. Stigler, Statistics on the Table: The History of Statistical Concepts and Meth- ods, Harvard University Press, Cambridge, USA, 1997.
  32. E. G. Ravenstein, The laws of migration, Journal of the Royal Statistical Society 52 (2) (1889) 241-305.
  33. G. K. Zipf, The Psychobiology of Language, Routledge, London, 1936.
  34. G. K. Zipf, The generalized harmonic series as a fundamental principle of social organization, Psychological Record 4 (1940) 43.
  35. G. K. Zipf, National Unity and Disunity, Principia Press, Bloomington, 1941.
  36. T. Hägerstraand, What About People in Regional Science?, Papers in Regional Science 24 (1) (1970) 7-24.
  37. S. Chardonnel, Time-geography :Individuals in Time and Space, in: Models in Spatial Analysis, sanders, lena Edition, Geographical Information Systems Series, ISTE, 2007, p. 319.
  38. D. O'Sullivan, S. M. Manson, Do Physicists Have Geography Envy? And What Can Geographers Learn from It?, Annals of the Association of American Geog- raphers 105 (4) (2015) 704-722.
  39. M. Barthelemy, Spatial networks, Physics Reports 499 (2011) 1-101.
  40. M. Barthelemy, The structure and dynamics of cities, Cambridge University Press, 2016.
  41. C. Potter, New questions in the 1940 census, Prologue-Quarterly of the National Archives and Records Administration 42 (4) (2010) 46-52.
  42. F. Simini, M. C. González, A. Maritan, A.-L. Barabási, A universal model for mobility and migration patterns, Nature 484 (7392) (2012) 96-100.
  43. X. Liang, J. Zhao, L. Dong, K. Xu, Unraveling the origin of exponential law in intra-urban human mobility, Scientific Reports 3 (2983).
  44. C. M. Schneider, V. Belik, T. Couronné, Z. Smoreda, M. C. González, Unravel- ling daily human mobility motifs, Journal of The Royal Society Interface 10 (84) (2013) 20130246.
  45. J. R. Palmer, T. J. Espenshade, F. Bartumeus, C. Y. Chung, N. E. Ozgencil, K. Li, New approaches to human mobility: Using mobile phones for demographic re- search, Demography 50 (3) (2013) 1105-1128.
  46. D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel, Nature 439 (7075) (2006) 462-465.
  47. C. Song, Z. Qu, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility, Science 327 (2010) 1018-1021.
  48. M. C. Gonzalez, C. A. Hidalgo, A.-L. Barabasi, Understanding individual hu- man mobility patterns, Nature 453 (7196) (2008) 779-782.
  49. Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, V. D. Blondel, Unique in the crowd: The privacy bounds of human mobility, Scientific Reports 3.
  50. V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, C. Ziemlicki, Data for development: the d4d challenge on mobile phone data, arXiv preprint arXiv:1210.0137.
  51. X. Lu, E. Wetter, N. Bharti, A. J. Tatem, L. Bengtsson, Approaching the limit of predictability in human mobility, Scientific Reports 3 (2013) 2923.
  52. G. Barlacchi, M. De Nadai, R. Larcher, A. Casella, C. Chitic, G. Torrisi, F. An- tonelli, A. Vespignani, A. Pentland, B. Lepri, A multi-source dataset of urban life in the city of milan and the province of trentino, Scientific data 2.
  53. M. De Domenico, A. Lima, M. C. González, A. Arenas, Personalized routing for multitudes in smart cities, EPJ Data Science 4 (1) (2015) 1-11.
  54. R. W. Douglass, D. A. Meyer, M. Ram, D. Rideout, D. Song, High resolu- tion population estimates from telecommunications data, EPJ Data Science 4 (1) (2015) 1-13.
  55. A. Alshamsi, E. Awad, M. Almehrezi, V. Babushkin, P.-J. Chang, Z. Shoroye, A.-P. Tóth, I. Rahwan, Misery loves company: happiness and communication in the city, EPJ Data Science 4 (1) (2015) 1-12.
  56. V. D. Blondel, A. Decuyper, G. Krings, A survey of results on mobile phone datasets analysis, EPJ Data Science 4 (2015) 10.
  57. A. Bazzani, B. Giorgini, S. Rambaldi, R. Gallotti, L. Giovannini, Statisti- cal laws in urban mobility from microscopic gps data in the area of florence, arXiv:0912.4371.
  58. R. Shin, S. Hong, K. Lee, S. Chong, On the levy-walk nature of human mobility: Do humans walk like monkeys?, in: Proc. IEEE INFOCOM, 2008, pp. 924-932.
  59. Y. Zheng, Q. Li, Y. Chen, X. Xie, W.-Y. Ma, Understanding mobility based on gps data, in: Proceedings of the 10th international conference on Ubiquitous computing, ACM, 2008, pp. 312-321.
  60. Y. Zheng, L. Zhang, X. Xie, W.-Y. Ma, Mining interesting locations and travel sequences from gps trajectories, in: Proceedings of the 18th international con- ference on World wide web, ACM, 2009, pp. 791-800.
  61. Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, W.-Y. Ma, Mining user similarity based on location history, in: Proceedings of the 16th ACM SIGSPATIAL in- ternational conference on Advances in geographic information systems, ACM, 2008, p. 34.
  62. Y. Zheng, X. Xie, W.-Y. Ma, Geolife: A collaborative social networking service among user, location and trajectory., IEEE Data Eng. Bull. 33 (2) (2010) 32-39.
  63. A. Bazzani, B. Giorgini, S. Rambaldi, R. Gallotti, L. Giovannini, Statistical laws in urban mobility from microscopic gps data in the area of florence, Journal of Statistical Mechanics: Theory and Experiment 2010 (05) (2010) P05001.
  64. L. Pappalardo, S. Rinzivillo, Z. Qu, D. Pedreschi, F. Giannotti, Understanding the patterns of car travel, The European Physical Journal Special Topics 215 (1) (2013) 61-73.
  65. A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, C. Mascolo, A tale of many cities: universal patterns in human urban mobility, PloS one 7 (5) (2012) e37027.
  66. B. Hawelka, I. Sitko, E. Beinat, S. Sobolevsky, P. Kazakopoulos, C. Ratti, Geo- located Twitter as proxy for global mobility patterns, Cartography and Geo- graphic Information Science 41 (2014) 260-271.
  67. R. Jurdak, K. Zhao, J. Liu, M. AbouJaoude, M. Cameron, D. Newth, Under- standing human mobility from twitter, PloS one 10 (7) (2015) e0131469.
  68. S. Scellato, A. Noulas, R. Lambiotte, C. Mascolo, Socio-spatial properties of online location-based social networks., ICWSM 11 (2011) 329-336.
  69. M. E. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010.
  70. A. Java, X. Song, T. Finin, B. Tseng, Why we twitter: understanding microblog- ging usage and communities, in: Proceedings of the 9th WebKDD and 1st SNA- KDD 2007 workshop on Web mining and social network analysis, ACM, 2007, pp. 56-65.
  71. B. A. Huberman, D. M. Romero, F. Wu, Social networks that matter: Twitter under the microscope, Available at SSRN 1313405.
  72. H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news media?, in: Proceedings of the 19th international conference on World wide web, ACM, 2010, pp. 591-600.
  73. A. Pak, P. Paroubek, Twitter as a corpus for sentiment analysis and opinion mining., in: LREc, Vol. 10, 2010, pp. 1320-1326.
  74. J. Bollen, H. Mao, A. Pepe, Modeling public mood and emotion: Twitter senti- ment and socio-economic phenomena., ICWSM 11 (2011) 450-453.
  75. S. A. Golder, M. W. Macy, Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures, Science 333 (6051) (2011) 1878-1881.
  76. T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users: real-time event detection by social sensors, in: Proceedings of the 19th international con- ference on World wide web, ACM, 2010, pp. 851-860.
  77. A. M. MacEachren, A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Savelyev, P. Mitra, X. Zhang, J. Blanford, Senseplace2: Geotwitter analytics support for situational awareness, in: Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on, IEEE, 2011, pp. 181-190.
  78. D. Thom, H. Bosch, S. Koch, M. Wörner, T. Ertl, Spatiotemporal anomaly de- tection through visual analysis of geolocated twitter messages, in: Visualization Symposium (PacificVis), 2012 IEEE Pacific, IEEE, 2012, pp. 41-48.
  79. L. Sloan, J. Morgan, Who tweets with their location? understanding the rela- tionship between demographic characteristics and the use of geoservices and geotagging on twitter, PloS one 10 (11) (2015) e0142209.
  80. P. Turchin, Quantitative Analysis of Movement: Measuring and Modeling Pop- ulation Redistribution in Animals and Plants, Sinauer Associates, Sunderland, Massachusetts, USA, 1998.
  81. C. Song, T. Koren, P. Wang, A.-L. Barabási, Modelling the scaling properties of human mobility, Nature Physics 6 (10) (2010) 818-823.
  82. K. Zhao, M. Musolesi, P. Hui, W. Rao, S. Tarkoma, Explaining the power-law distribution of human mobility through transportation modality decomposition, Scientific reports 5.
  83. P. A. DiMilla, J. A. Stone, J. A. Quinn, S. M. Albelda, D. A. Lauffenburger, Maximal migration of human smooth muscle cells on fibronectin and type iv collagen occurs at an intermediate attachment strength, The Journal of cell biol- ogy 122 (3) (1993) 729-737.
  84. Y. Maruyama, J. Murakami, Truncated levy walk of a nanocluster bound weakly to an atomically flat surface: Crossover from superdiffusion to normal diffusion, Physical Review B 67 (8) (2003) 085406.
  85. A. Vazquez, O. Sotolongo-Costa, F. Brouers, Diffusion regimes in levy flights with trapping, Physica A: Statistical Mechanics and its Applications 264 (3) (1999) 424-431.
  86. M. Zhao, L. Mason, W. Wang, Empirical study on human mobility for mobile wireless networks, in: Military Communications Conference, 2008. MILCOM 2008. IEEE, IEEE, 2008, pp. 1-7.
  87. L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti, A.-L. Barabási, Returners and explorers dichotomy in human mobility, Nature Com- munications 6 (2015) 8166.
  88. U. Alon, Network motifs: theory and experimental approaches, Nature Reviews Genetics 8 (6) (2007) 450-461.
  89. J. de Dios Ortúzar, L. Willumsen, Modeling Transport, John Wiley and Sons Ltd, New York, 2011.
  90. M. S. Iqbal, C. F. Choudhury, P. Wang, M. C. González, Development of origin- destination matrices using mobile phone call data, Transportation Research Part C: Emerging Technologies 40 (2014) 63-74.
  91. J. White, I. Wells, Extracting origin destination information from mobile phone data, in: Road Transport Information and Control, 2002. Eleventh International Conference on (Conf. Publ. No. 486), 2002, pp. 30-34.
  92. N. Caceres, J. Wideberg, F. G. Benitez, Deriving origin destination data from a mobile phone network, Intelligent Transport Systems, IET 1 (1) (2007) 15-26.
  93. S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, J. Rowland, A. Varshavsky, A Tale of Two Cities, in: Proceedings of the Eleventh Workshop on Mobile Com- puting Systems & Applications, HotMobile '10, ACM, New York, NY, USA, 2010, pp. 19-24.
  94. F. Calabrese, G. Di Lorenzo, L. Liu, C. Ratti, Estimating origin-destination flows using mobile phone location data, IEEE Pervasive Computing 10 (4) (2011) 0036-44.
  95. S. Jiang, G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, M. C. González, A review of urban computing for mobile phone traces: current methods, chal- lenges and opportunities, in: Proceedings of the 2nd ACM SIGKDD Interna- tional Workshop on Urban Computing, ACM, 2013, p. 2.
  96. M. Lenormand, M. Picornell, O. G. Cantú-Ros, A. Tugores, T. Louail, R. Her- ranz, M. Barthelemy, E. Frías-Martínez, J. J. Ramasco, Cross-Checking Differ- ent Sources of Mobility Information, PLoS ONE 9 (8) (2014) e105184.
  97. L. Alexander, S. Jiang, M. Murga, M. C. González, Origin-destination trips by purpose and time of day inferred from mobile phone data, Transportation Re- search Part C: Emerging Technologies 58, Part B (2015) 240-250.
  98. J. L. Toole, S. Colak, B. Sturt, L. P. Alexander, A. Evsukoff, M. C. González, The path most traveled: Travel demand estimation using big data resources, Transportation Research Part C: Emerging Technologies 58, Part B (2015) 162- 177.
  99. N. Caceres, J. Wideberg, F. G. Benitez, Review of traffic data estimations ex- tracted from cellular networks, IET Intelligent Transport Systems 2 (3) (2008) 179-192.
  100. S. C ¸olak, L. P. Alexander, B. G. Alvim, S. R. Mehndiratta, M. C. González, Analyzing Cell Phone Location Data for Urban Travel, Transportation Research Record: Journal of the Transportation Research Board 2526 (2015) 126-135.
  101. L. Varga, A. Kovács, G. Tóth, I. Papp, Z. Néda, Further we travel the faster we go, PloS one 11 (2) (2016) e0148913.
  102. R. Gallotti, M. Barthelemy, Anatomy and efficiency of urban multimodal mo- bility, Scientific Reports 4 (2014) 6911.
  103. R. Gallotti, A. Bazzani, S. Rambaldi, M. Barthelemy, A stochastic model of randomly accelerated walkers for human mobility, Nature Communications 7.
  104. R. Louf, M. Barthelemy, How congestion shapes cities: from mobility patterns to scaling, Scientific Reports 4.
  105. C. Marchetti, Anthropological invariants in travel behavior, Technological Fore- casting and Social Change 47 (1994) 88.
  106. Y. Zehavi, The umot model, Tech. rep., The Urban Project Department, The World Bank, Washington, DC, US (1977).
  107. D. Levinson, Y. Wu, The rational locator reexamined: Are travel times still sta- ble?, Transportation 32 (2) (2005) 187-202.
  108. R. Kölbl, D. Helbing, Energy laws in human travel behaviour, New Journal of Physics 5 (1) (2003) 48.
  109. T. Hettinger, Physiologische leistungsgrundlagen, Handbuch der Ergonomie 1.
  110. A. Einstein, über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen (on the move- ment of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat), Annalen der physik 17 (1905) 549-560.
  111. J. E. Gillis, G. H. Weiss, Expected number of distinct sites visited by a random walk with an infinite variance, Journal of Mathematical Physics 11 (4) (1970) 1307-1312.
  112. H. Barbosa, F. B. de Lima-Neto, A. Evsukoff, R. Menezes, The effect of recency to human mobility, EPJ Data Science 4 (1) (2015) 1-14.
  113. K. W. Axhausen, Social networks and travel: some hypotheses, in: K. Donaghy, S. Poppelreuter, G. Rudinger (Eds.), Social dimensions of sustainable transport: transatlantic perspectives, Ashgate Aldershot, London, UK, 2005, pp. 90-108.
  114. J. A. Carrasco, E. J. Miller, Exploring the propensity to perform social activities: social networks approach, Transportation 33 (2006) 463-480.
  115. E. Dugundji, J. Walker, Discrete choice with social and spatial network interde- pendencies: an empirical example using mixed gev models with field and panel effects, Transportation Research Record: Journal of the Transportation Research Board 1921 (2005) 70-78.
  116. D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins, Geographic routing in social networks, Proceedings of the National Academy of Sciences of the United States of America 102 (11623-11628).
  117. J. Carrasco, E. Miller, B. Wellman, How far and with whom do people social- ize? empirical evidence about the distance between social network members, Transportation Research Record: Journal of the Transportation Research Board 2076 (2008) 114-122.
  118. P. van den Berg, T. Arentze, H. Timmermans, A path analysis of social networks, telecommunication and social activity-travel patterns, Transportation Research Part C: Emerging Technologies 26 (2013) 256-268.
  119. J. A. Carrasco, B. Hogan, B. Wellman, E. J. Miller, Collecting social network data to study social activity-travel behaviour: an egocentric approach, Environ- ment and Planning B: Planning and Design 35 (2008) 961-980.
  120. J. A. Carrasco, B. Hogan, B. Wellman, E. J. Miller, Agency in social activity and ict interactions: The role of social networks in time and space, Tijdschrift voor economische en sociale geografie 99 (2008) 562-583.
  121. R. Lambiotte, V. D. Blondel, C. De Kerchove, E. Huens, C. Prieur, Z. Smoreda, P. Van Dooren, Geographical dispersal of mobile communication networks, Physica A: Statistical Mechanics and its Applications 387 (2008) 5317-5325.
  122. G. Krings, F. Calabrese, C. Ratti, V. D. Blondel, Urban gravity: a model for inter-city telecommunication flows, Journal of Statistical Mechanics: Theory and Experiment 2009 (07) (2009) L07003.
  123. S. Phithakkitnukoon, Z. Smoreda, P. Olivier, Socio-Geography of Human Mo- bility: A Study Using Longitudinal Mobile Phone Data, PLoS ONE 7 (6) (2012) e39253.
  124. W. Pan, G. Ghoshal, C. Krumme, M. Cebrian, A. Pentland, Urban characteristics attributable to density-driven tie formation, Nature Communications 4 (2013) 1961.
  125. M. De Domenico, A. Lima, M. Musolesi, Interdependence and predictability of human mobility and social interactions, Pervasive and Mobile Computing 9 (6) (2013) 798-807.
  126. F. Takens, Detecting strange attractors in turbulence, Vol. 898 of Lecture Notes in Mathematics, Springer-Verlag, 1981, pp. 366-381.
  127. N. Eagle, A. S. Pentland, D. Lazer, Inferring friendship network structure by us- ing mobile phone data, Proceedings of the national academy of sciences 106 (36) (2009) 15274-15278.
  128. D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, J. Kleinberg, Inferring social ties from geographic coincidences, Proc. Natl. Acad. Sci. USA 107 (2010) 22436-22441.
  129. M. Picornell, T. Ruiz, M. Lenormand, J. J. Ramasco, T. Dubernet, E. Frías- Martínez, Exploring the potential of phone call data to characterize the rela- tionship between social network and travel behavior, Transportation 42 (2015) 647-668.
  130. L. Backstrom, E. Sun, C. Marlow, Find me if you can: Improving geographical prediction with social and spatial proximity, in: Proceedings of the 19th Inter- national Conference on World Wide Web, WWW '10, ACM, New York, NY, USA, 2010, pp. 61-70.
  131. D. Wang, D. Pedreschi, C. Song, F. Giannotti, A.-L. Barabasi, Human mobility, social ties, and link prediction, in: Proceedings of the 17th ACM SIGKDD in- ternational conference on Knowledge discovery and data mining, ACM, 2011, pp. 1100-1108.
  132. A. Páez, D. M. Scott, Social influence on travel behavior: a simulation example of the decision to telecommute, Environment and Planning A 39 (2007) 647- 665.
  133. E. Molin, T. Arentze, H. Timmermans, Social activities and travel demand: model-based analysis of social network data, Transportation Research Record: Journal of the Transportation Research Board 2082 (2008) 168-175.
  134. T. Arentze, H. Timmermans, Social networks, social interactions, and activity- travel behavior: a framework for microsimulation, Environment and Planning B: Planning and Design 35 (6) (2008) 1012-1027.
  135. J.-A. Carrasco, E. J. Miller, The social dimension in action: a multilevel, per- sonal networks model of social activity frequency, Transportation Research Part A: Policy and Practice 43 (2009) 90-104.
  136. J. Hackney, F. Marchal, An agent model of social network and travel behavior interdependence, Transp. Res. Part A 45 (2011) 296-309.
  137. N. Ronald, T. Arentze, H. Timmermans, Modeling social interactions between individuals for joint activity scheduling, Transportation research part B: method- ological 46 (2012) 276-290.
  138. F. Sharmeen, T. Arentze, H. Timmermans, Dynamics of face-to-face social in- teraction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence, Journal of Transport Geography 34 (2014) 211- 220.
  139. M. C. González, P. Lind, H. Herrmann, System of mobile agents to model social networks, Physical Review Letters 96 (8) (2006) 088702. arXiv:0602091.
  140. P. A. Grabowicz, J. J. Ramasco, B. Gonc ¸alves, V. M. Eguíluz, Entangling mo- bility and interactions in social media, PLoS One 9 (3) (2014) e92196.
  141. J. L. Toole, C. Herrera-Yagüe, C. M. Schneider, M. C. González, Coupling so- cial mobility and social ties, Journal of The Royal Society Interface 12 (2015) 20141128.
  142. A. G. Wilson, A statistical theory of spatial distribution models, Transportation Research 1 (1967) 253-269.
  143. D. McFadden, The measurement of urban travel demand, Journal of Public Eco- nomics 3 (1974) 303-328.
  144. M. ben Akiva, S. R. Lerman, Discrete choice analysis: theory and application to travel demand, The MIT Press, 1985.
  145. O. Sagarra, C. P. Vicente, A. Dïaz-Guilera, Statistical mechanics of multi-edge networks, Physical Review E 88 (2013) 062806.
  146. O. Sagarra, C. P. Vicente, A. Díaz-Guilera, Role of adjacency-matrix degeneracy in maximum-entropy-weighted network models, Physical Review E 92 (2015) 052816.
  147. Y. Ren, M. Ercsey-Ravasz, P. Wang, M. C. González, Z. Toroczkai, Predicting commuter flows in spatial networks using a radiation model based on temporal ranges, Nature Communications 5 (5347).
  148. H. C. Carey, Principles of Social Science, Lippincott, 1858.
  149. C. Thiemann, F. Theis, D. Grady, R. Brune, D. Brockmann, The structure of borders in a small world, PLoS ONE 5 (2010) e15422.
  150. W.-S. Jung, F. Wang, H. E. Stanley, Gravity model in the korean highway, EPL (Europhysics Letters) 81 (4) (2008) 48005.
  151. P. Kaluza, A. Kölzsch, M. T. Gastner, B. Blasius, The complex network of global cargo ship movements, Journal of The Royal Society Interface 7 (2010) 1093- 1103.
  152. P. Expert, T. S. Evans, V. D. Blondel, R. Lambiotte, Uncovering space- independent communities in spatial networks, Proceedings of the National Academy of Sciences 108 (19) (2011) 7663.
  153. W. J. Reilly, The law of retail gravitation, William J. Reilly, New York, 1931.
  154. P. McCullagh, J. A. Nelder, Generalized Linear Models, no. 37 in Monograph on Statistics and Applied Probability, Chapman and Hall, London, UK, 1989.
  155. X. Li, H. Tian, D. Lai, Z. Zhang, Validation of the gravity model in predicting the global spread of influenza, International journal of environmental research and public health 8 (2011) 3134-3143.
  156. M. Lenormand, S. Huet, F. Gargiulo, G. Deffuant, A Universal Model of Com- muting Networks, PLoS ONE 7 (2012) e45985.
  157. M. Lenormand, A. Bassolas, J. J. Ramasco, Systematic comparison of trip dis- tribution laws and models, Journal of Transport Geography 51 (2016) 158-169.
  158. S. Erlander, N. F. Stewart, The Gravity model in transportation analysis: theory and extensions, Topics in transportation, VSP, Utrecht, The Netherlands, 1990.
  159. A. G. Wilson, Urban and regional models in geography and planning, Wiley, New York, 1970.
  160. D. Karemera, V. I. Oguledo, B. Davis, A gravity model analysis of international migration to north america, Applied Economics 32 (13) (2000) 1745-1755.
  161. R. Patuelli, A. Reggiani, S. P. Gorman, P. Nijkamp, F.-J. Bade, Network analysis of commuting flows: A comparative static approach to german data, Networks and Spatial Economics 7 (2007) 315-331.
  162. Y. Xia, O. N. Bjørnstad, B. T. Grenfell, Measles metapopulation dynamics: A gravity model for epidemiological coupling and dynamics, The American Natu- ralist 164 (2004) 267-281.
  163. C. Viboud, O. N. Bjørnstad, D. L. Smith, L. Simonsen, M. A. Miller, B. T. Grenfell, Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza, Science 312 (2006) 447-451.
  164. D. Balcan, V. Colizza, B. Goncalves, H. Hu, J. J. Ramasco, A. Vespignani, Mul- tiscale mobility networks and the spatial spreading of infectious diseases, Pro- ceedings National Academy of Science USA 106 (2009) 21484-21489.
  165. D. Balcan, V. Colizza, B. Gonc ¸alves, H. Hu, J. J. Ramasco, A. Vespignani, Mod- eling the spatial spread of infectious diseases: The global epidemic and mobility computational model, Journal of Computational Science 1 (2010) 132.
  166. A. P. Masucci, J. Serras, A. Johansson, M. Batty, Gravity versus radiation mod- els: On the importance of scale and heterogeneity in commuting flows, Physical Review E 88 (2013) 022812.
  167. W. E. Deming, F. F. Stephan, On a least squares adjustment of a sample fre- quency table when the expected marginal totals are known, Annals of Mathe- matical Statistics 11 (1940) 427-444.
  168. A. G. Wilson, Entropy in urban and regional modelling, London: Pion, 1970.
  169. S.-H. Cha, Comprehensive survey on distance/similarity measures between probability density functions, City 1 (2) (2007) 1.
  170. R. Flowerdew, M. Aitkin, A method of fitting the gravity model based on the poisson distribution, Journal of Regional Science 22 (2) (1982) 191-202.
  171. J. A. Nelder, R. J. Baker, Generalized linear models, Encyclopedia of Statistical Sciences.
  172. M. Schneider, Gravity models and trip distribution theory, Papers of the regional science association 5 (1959) 51-58.
  173. K. E. Heanue, C. E. Pyers, A comparative evaluation of trip distribution proce- dures, Highway Research Record 114 (1966) 20-50.
  174. E. R. Ruiter, Toward a better understanding of the intervening opportunities model, Transportation Research 1 (1967) 47-56.
  175. K. E. Haynes, D. L. Poston Jr, P. Schnirring, Intermetropolitan migration in high and low opportunity areas: Indirect tests of the distance and intervening opportunities hypotheses, Economic Geography 49 (1) (1973) 68-73.
  176. T. J. Fik, G. F. Mulligan, Spatial flows and competing central places: Toward a general theory of hierarchical interaction, Environment and Planning A 22 (1990) 527-549.
  177. S. Akwawua, J. A. Poller, The development of an intervening opportunities model with spatial dominance effects, Journal of Geographical Systems 3 (2001) 69-86.
  178. D. K. Witheford, Comparison of trip distribution by opportunity model and grav- ity model, Pittsburgh Area Transportation Study, 1961.
  179. C. E. Pyers, Evaluation of intervening opportunities trip distribution models, Highway Research Record 114 (114) (1966) 71-88.
  180. H. C. Lawson, J. A. Dearinger, A comparison of four work trip distribution models, Proceedings of American Society of Civil Engineering 93 (1967) 1-25.
  181. F. Zhao, L.-F. Chow, M.-T. Li, A. Gan, S. D. L., Refinement of FSUTMS trip distribution methodology, Tech. rep., Technical Memorandum 3, Florida Inter- national University (2001).
  182. R. Eash, Development of a doubly constrained intervening opportunities model for trip distribution, no. 84, Chicago Area Transportation Study, 1984.
  183. M. J. Wills, A flexible gravity-opportunities model for trip distribution, Trans- portation Research 20B (1986) 89-111.
  184. M. B. Gonc ¸alves, I. Ulyssea-Neto, The development of a new gravity- opportunity model for trip distribution, Environment and Planning A 25 (1993) 817-826.
  185. F. Simini, A. Maritan, Z. Néda, Human mobility in a continuum approach, PLoS ONE 8 (3) (2013) e60069.
  186. Y. Yang, C. Herrera, N. Eagle, M. C. González, Limits of predictability in com- muting flows in the absence of data for calibration, Scientific Reports 4 (5662).
  187. G. Carra, I. Mulalic, M. Fosgerau, M. Barthelemy, Modeling the relation be- tween income and commuting distance, Journal of the Royal Society Interface 13 (2016) 20160306.
  188. S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, M. Zanin, The structure and dynamics of multilayer networks, Physics Reports 544 (2014) 1-122.
  189. M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, M. A. Porter, Multilayer networks, Journal of Complex Networks 2 (2014) 203.
  190. R. Gallotti, M. Barthelemy, The multilayer temporal network of public transport in great britain, Scientific Data 2 (2015) 140056.
  191. J. Feng, X. Li, B. Mao, Q. Xu, Y. Bai, Weighted complex network analysis of the beijing subway, Physica A: Statistical Mechanics and its Applications 474 (2017) 213-223.
  192. V. Latora, M. Marchiori, Is the boston subway a small-world network?, Physica A: Statistical Mechanics and its Applications 314 (2002) 109-113.
  193. P. Angeloudis, D. Fisk, Large subway systems as complex networks, Physica A: Statistical Mechanics and its Applications 367 (2006) 553-558.
  194. W. Guo, X. Lu, London underground: Neighbourhood centrality and relation to urban geography, in: 2016 IEEE International Smart Cities Conference (ISC2), Trento, Italy, 2016, pp. 1-7.
  195. S. Derrible, C. Kennedy, The complexity and robustness of metro networks, Physica A: Statistical Mechanics and its Applications 389 (2010) 3678-3691.
  196. K. Lee, W.-S. Jung, J. S. Park, M. Choi, Statistical analysis of the metropoli- tan seoul subway system: Network structure and passenger flows, Physica A: Statistical Mechanics and its Applications 387 (2008) 6231-6234.
  197. X. Xu, J. Hu, F. Liu, L. Liu, Scaling and correlations in three bus-transport networks of china, Physica A: Statistical Mechanics and its Applications 374 (2007) 441-448.
  198. Y.-Z. Chen, N. Li, D.-R. He, A study on some urban bus transport networks, Physica A: Statistical Mechanics and its Applications 376 (2007) 747-754.
  199. J. Sienkiewicz, J. A. Hołyst, Statistical analysis of 22 public transport networks in poland, Physical Review E 72 (2005) 046127.
  200. K. A. Seaton, L. M. Hackett, Stations, trains and small-world networks, Physica A: Statistical Mechanics and its Applications 339 (2004) 635-644.
  201. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, S. S. Manna, Small-world properties of the indian railway network, Physical Review E 67 (2003) 036106.
  202. C. von Ferber, T. Holovatch, Y. Holovatch, V. Palchykov, Public transport net- works: empirical analysis and modeling, The European Physical Journal B 68 (2009) 261-275.
  203. M. Kurant, P. Thiran, Layered complex networks, Physical review letters 96 (2006) 138701.
  204. M. Kurant, P. Thiran, Extraction and analysis of traffic and topologies of trans- portation networks, Physical Review E 74 (2006) 036114.
  205. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S. Gómez, A. Arenas, Mathematical formulation of multilayer networks, Physical Review X 3 (2013) 041022.
  206. S. Gomez, A. Diaz-Guilera, J. Gomez-Gardenes, C. J. Perez-Vicente, Y. Moreno, A. Arenas, Diffusion dynamics on multiplex networks, Physical re- view letters 110 (2013) 028701.
  207. A. Solé-Ribalta, S. Gómez, A. Arenas, Congestion induced by the structure of multiplex networks, Physical review letters 116 (2016) 108701.
  208. M. De Domenico, A. Solé-Ribalta, S. Gómez, A. Arenas, Navigability of interconnected networks under random failures, Proceedings of the National Academy of Sciences 111 (2014) 8351-8356.
  209. F. Battiston, V. Nicosia, V. Latora, Efficient exploration of multiplex networks, New Journal of Physics 18 (2016) 043035.
  210. F. Radicchi, A. Arenas, Abrupt transition in the structural formation of intercon- nected networks, Nature Physics 9 (2013) 717-720.
  211. M. Diakonova, J. J. Ramasco, V. Eguíluz, Dynamical leaps due to microscopic changes in multilayer networks, EPL 117 (2017) 48004.
  212. L. Alessandretti, M. Karsai, L. Gauvin, User-based representation of time- resolved multimodal public transportation networks, Royal Society Open Sci- ence 3.
  213. E. Strano, S. Shai, S. Dobson, M. Barthelemy, Multiplex networks in metropoli- tan areas: generic features and local effects, Journal of The Royal Society Inter- face 12 (2015) 20150651.
  214. A. Aleta, S. Meloni, Y. Moreno, A multilayer perspective for the analysis of urban transportation systems, arXiv 1607.00072.
  215. D. Helbing, A. Johansson, Pedestrian, Crowd, and Evacuation Dynamics, Arxiv e-print, arXiv: 1309.1609.
  216. D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73 (4) (2001) 1067-1141.
  217. Z. Zainuddin, M. M. Shuaib, I. M. Abu-Sulyman, The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedes- trian Movement, International Journal of Mathematical, Computational, Physi- cal, Electrical and Computer Engineering 4 (2) (2010) 316 -320.
  218. T. Vicsek, A. Zafeiris, Collective motion, Physics Reports 517 (2012) 71-140.
  219. R. Benenson, M. Omran, J. Hosang, B. Schiele, Ten years of pedestrian detec- tion, what have we learned?, in: Lecture Notes in Computer Science, Vol. 8926, 2014, pp. 613-627.
  220. K. Cao, Y. Chen, D. Stuart, D. Yue, K. Cao, Y. Chen, D. Stuart, D. Yue, Cyber- physical modeling and control of crowd of pedestrians: A review and new frame- work, IEEE/CAA Journal of Automatica Sinica 2 (3) (2015) 334-344.
  221. R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological 36 (6) (2002) 507-535.
  222. D. Helbing, A. Johansson, J. Mathiesen, M. H. Jensen, A. Hansen, Analytical Approach to Continuous and Intermittent Bottleneck Flows, Physical Review Letters 97 (16) (2006) 168001.
  223. J. A. Carrillo, S. Martin, M.-T. Wolfram, A local version of the Hughes model for pedestrian flow, Arxiv e-print, arXiv:1501.07054.
  224. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature 407 (6803) (2000) 487-490.
  225. D. Helbing, P. Molnár, Social force model for pedestrian dynamics, Physical Review E 51 (5) (1995) 4282-4286.
  226. D. Helbing, P. Molnár, I. J. Farkas, K. Bolay, Self-Organizing Pedestrian Move- ment, Environment and Planning B: Planning and Design 28 (3) (2001) 361- 383.
  227. D. Helbing, A. Johansson, H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Physical Review E 75 (4) (2007) 046109.
  228. W. Sikora, J. Malinowski, A. Kupczak, Model of skyscraper evacuation with the use of space symmetry and fluid dynamic approximation, in: Lecture Notes in Computer Science, Vol. 7204, 2012, pp. 924-932.
  229. D. R. Parisi, P. A. Negri, Sequential evacuation strategy for multiple rooms to- ward the same means of egress, Papers in Physics 6 (0) (2014) 060013.
  230. J. Chen, J. Ma, S. M. Lo, Modeling pedestrian evacuation movement in a sway- ing ship, Arxiv e-print, arXiv:1511.04686.
  231. A. Kirchner, K. Nishinari, A. Schadschneider, Friction effects and clogging in a cellular automaton model for pedestrian dynamics, Physical Review E 67 (5) (2003) 056122.
  232. A. Johansson, D. Helbing, H. Z. Al-Abideen, S. Al-Bosta, From Crowd Dynam- ics to Crowd Safety: A Video-Based Analysis, Advances in Complex Systems 11 (2008) 497-527.
  233. M. Batty, J. Desyllas, E. Duxbury, Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival, Urban Studies 40 (8) (2003) 1573-1590.
  234. G. Lämmel, D. Grether, K. Nagel, The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations, Transportation Research Part C: Emerging Technologies 18 (1) (2010) 84-98.
  235. B. Kunwar, F. Simini, A. Johansson, Large Scale Pedestrian Evacuation Mod- eling Framework Using Volunteered Geographical Information, Transportation Research Procedia 2 (2014) 813-818.
  236. B. Kunwar, F. Simini, A. Johansson, Evacuation time estimate for a total pedes- trian evacuation using queuing network model and volunteered geographic in- formation, Arxiv e-print, arXiv: 1512.03087.
  237. J. L. Silverberg, M. Bierbaum, J. P. Sethna, I. Cohen, Collective Motion of Hu- mans in Mosh and Circle Pits at Heavy Metal Concerts, Physical Review Letters 110 (22) (2013) 228701.
  238. A. Johansson, M. Batty, K. Hayashi, O. Al Bar, D. Marcozzi, Z. A. Memish, Crowd and environmental management during mass gatherings, The Lancet In- fectious Diseases 12 (2) (2012) 150-156.
  239. W. J. Yu, R. Chen, L. Y. Dong, S. Q. Dai, Centrifugal force model for pedestrian dynamics, Physical Review E 72 (2) (2005) 026112.
  240. W. Yu, A. Johansson, Modeling crowd turbulence by many-particle simulations, Physical Review E 76 (4) (2007) 046105.
  241. M. Chraibi, A. Seyfried, A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Physical Review E 82 (4) (2010) 046111.
  242. M. Moussaïd, D. Helbing, S. Garnier, A. Johansson, M. Combe, G. Theraulaz, Experimental study of the behavioural mechanisms underlying self-organization in human crowds, Proceedings of the Royal Society of London B: Biological Sciences 276 (1668) (2009) 2755-2762.
  243. M. Moussaïd, D. Helbing, G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proceedings of the National Academy of Sciences of the United States of America 108 (17) (2011) 6884-6888.
  244. A. Johansson, Constant-net-time headway as a key mechanism behind pedes- trian flow dynamics, Physical Review E 80 (2) (2009) 026120.
  245. F. Dietrich, G. Köster, Gradient navigation model for pedestrian dynamics, Physical Review E 89 (6) (2014) 062801.
  246. A. Colombi, M. Scianna, A. Tosin, Moving in a crowd: human perception as a multiscale process, Arxiv e-print, arXiv: 1502.01375.
  247. P. Degond, J. Pettré, S. Donikian, C. Appert-Rolland, A. Jelić, S. Lemercier, J. Hua, J. Narski, J. Fehrenbach, Time-delayed follow-the-leader model for pedestrians walking in line, Networks and Heterogeneous Media 10 (3) (2015) 579-608.
  248. B. Steffen, A Modification of the Social Force Model by Foresight, Arxiv e- print, arXiv: 0912.0634.
  249. L. Gulikers, J. Evers, A. Muntean, A. Lyulin, The effect of perception anisotropy on particle systems describing pedestrian flows in corridors, Journal of Statisti- cal Mechanics: Theory and Experiment 2013 (04) (2013) P04025.
  250. M. Chraibi, Oscillating behavior within the social force model, Arxiv e-print, arXiv:1412.1133.
  251. M. Chraibi, T. Ezaki, A. Tordeux, K. Nishinari, A. Schadschneider, A. Seyfried, Jamming transitions in force-based models for pedestrian dynamics, Physical Review E 92 (4) (20015) 042809.
  252. G. Köster, F. Treml, M. Gödel, Avoiding numerical pitfalls in social force mod- els, Physical Review E 87 (6) (2013) 063305.
  253. S. B. Dutta, R. McLeod, M. Friesen, GPU Accelerated Nature Inspired Methods for Modelling Large Scale Bi-directional Pedestrian Movement, in: Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, IPDPSW '14, IEEE Computer Society, 2014, pp. 448-456.
  254. D. Yanagisawa, A. Kimura, A. Tomoeda, R. Nishi, Y. Suma, K. Ohtsuka, K. Nishinari, Introduction of Frictional and Turning Function for Pedestrian Outflow with an Obstacle, Physical Review E 80 (3).
  255. T. Ezaki, D. Yanagisawa, K. Nishinari, Pedestrian flow through multiple bottle- necks, Physical Review E 86 (2) (2014) 026118.
  256. J. Cividini, C. Appert-Rolland, H.-J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, EPL (Europhysics Letters) 102 (2) (2013) 20002.
  257. E. Kirik, T. 'yana Yurgel'yan, D. Krouglov, The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model, Arxiv e-print, arXiv: 0906.4265.
  258. S. Sarmady, F. Haron, A. Z. Talib, Simulating Crowd Movements Using Fine Grid Cellular Automata, in: 2010 12th International Conference on Computer Modelling and Simulation (UKSim), 2010, pp. 428-433.
  259. P. C. Tissera, A. Castro, A. M. Printista, E. Luque, Simulating Behaviours to face up an Emergency Evacuation, Arxiv e-print, arXiv: 1401.5209.
  260. U. Chattaraj, A. Seyfried, P. Chakroborty, Comparison of pedestrian fundamen- tal diagram across cultures, Advances in Complex Systems 12 (03) (2009) 393- 405.
  261. A. Portz, A. Seyfried, Analyzing stop-and-go waves by experiments and model- ing, in: R. Peacock, E. Kuligowski, J. Averill (Eds.), Pedestrian and Evacuation Dynamics, Springer US, New York, US, 2011, pp. 577-586.
  262. T. Kretz, J. Lohmiller, J. Schlaich, The Social Force Model and its Relation to the Kladek Formula, Arxiv e-print, arXiv: 1512.01426.
  263. M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, G. Theraulaz, The Walking Be- haviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics, PLoS ONE 5 (4) (2010) e10047.
  264. J. Zhang, A. Seyfried, Quantification of Bottleneck Effects for Different Types of Facilities, Transportation Research Procedia 2 (2014) 51-59.
  265. T. Ducourant, S. Vieilledent, Y. Kerlirzin, A. Berthoz, Timing and distance char- acteristics of interpersonal coordination during locomotion, Neuroscience Let- ters 389 (1) (2005) 6-11.
  266. M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, G. Theraulaz, Traffic In- stabilities in Self-Organized Pedestrian Crowds, PLoS Computational Biology 8 (3) (2012) e1002442.
  267. M. Bukáček, P. Hrabák, M. Krbálek, Experimental analysis of two-dimensional pedestrian flow in front of the bottleneck, in: Procs. Traffic and Granular Flow'13, 2014, pp. 93-101.
  268. A. Corbetta, C.-m. Lee, A. Muntean, F. Toschi, Asymmetric pedestrian dynam- ics on a staircase landing from continuous measurements, Arxiv e-print, arXiv: 1511.04735.
  269. A. Jelić, C. Appert-Rolland, S. Lemercier, J. Pettré, Properties of pedestri- ans walking in line: Fundamental diagrams, Physical Review E 85 (3) (2012) 036111.
  270. J. Zhang, W. Klingsch, A. Schadschneider, A. Seyfried, Experimental study of pedestrian flow through a t-junction, in: Procs. Traffic and Granular Flow'11, 2013, pp. 241-249.
  271. J. Zhang, A. Tordeux, A. Seyfried, Effects of Boundary Conditions on Single- File Pedestrian Flow, Arxiv e-print, arXiv: 1508.06768 8751 (2014) 462-469.
  272. J. Zhang, A. Seyfried, Comparison of intersecting pedestrian flows based on experiments, Physica A: Statistical Mechanics and its Applications 405 (2014) 316-325.
  273. R. Guimera, S. Mossa, A. Turtschi, L. N. Amaral, The worldwide air transporta- tion network: Anomalous centrality, community structure, and cities' global roles, Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 7794-7799.
  274. P. Belobaba, A. Odoni, C. Barnhart, The Global Airline Industry, 1st Edition, Wiley, 2009.
  275. A. Cook, European Air Traffic Management: Principles, Practice, and Research, Ashgate Publishing, Ltd., 2007.
  276. R. Guimerá, L. a. N. Amaral, Modeling the world-wide airport network, The European Physical Journal B -Condensed Matter and Complex Systems 38 (2) (2004) 381-385.
  277. A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, The architecture of complex weighted networks, Proceedings of the National Academy of Sciences of the United States of America 101 (11) (2004) 3747-3752. arXiv:15007165.
  278. W. Li, X. Cai, Statistical analysis of airport network of China, Physical Review E 69 (2004) 046106.
  279. L. E. C. da Rocha, Structural evolution of the Brazilian airport network, Journal of Statistical Mechanics: Theory and Experiment 2009 (2009) P04020.
  280. A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortunato, Finding Statistically Significant Communities in Networks, PLoS ONE 6 (4) (2011) e18961.
  281. T. Verma, N. A. Araújo, H. J. Herrmann, Revealing the structure of the world airline network, Scientific Reports 4 (2014) 5638.
  282. A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A. J. G. del Amo, S. Boccaletti, Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures, The European Physical Journal Special Topics 215 (2013) 23-33.
  283. M. Zanin, F. Lillo, Modelling the air transport with complex networks: A short review, European Physics Journal Special Topics 215 (2013) 5-21.
  284. P. Fleurquin, B. Campanelli, V. M. Eguiluz, J. J. Ramasco, Trees of reactionary delay: Addressing the dynamical robustness of the us air transportation network, in: Procs. 4th SESAR Innovation Days, 2014.
  285. R. Beatty, R. Hsu, J. A. Rome, Preliminary Evaluation of Flight Delay Propaga- tion Through an Airline Schedule, Air Traffic Control Quarterly 7 (4).
  286. A. J. Cook, G. Tanner, European airline delay cost reference values, Tech. rep., Performance Review Unit, Eurocontrol (2011).
  287. J. E. Committee, Your flight has been delayed again: Flight delays cost passen- gers, airlines and the U.S. economy billions, Tech. rep., US Congress (2008).
  288. V. S. Folkes, S. Koletsky, J. L. Graham, A field study of casual inferences and consumer reaction: The view from the airport, Journal of Consumer Research 13 (1987) 534-539.
  289. C. Mayer, T. Sinai, Network Effects, Congestion Externalities, and Air Traf- fic Delays: Or Why All Delays Are Not Evil, American Economic Review 93 (2003) 1194-1215.
  290. N. G. Rupp, Further investigations into the causes of flight delays, Tech. rep., Working paper, Department of Economy, East Carolina University). Available online at http://www.ecu.edu/cs-educ/econ/upload/ecu0707.pdf (2007).
  291. S. AhmadBeygi, A. Cohn, Y. Guan, P. Belobaba, Analysis of the potential for delay propagation in passenger airline networks, Journal of Air Transport Man- agement 14 (5) (2008) 221-236.
  292. P. Bonnefoy, R. J. Hansman, Scalability and Evolutionary Dynamics of Air Transportation Networks in the United States, in: Procs. 7th AIAA Aviation Technology, Integration and Operations Conference (ATIO), 2007.
  293. P. T. Wang, L. A. Schaefer, L. A. Wojcik, Flight connections and their impacts on delay propagation, in: Digital Avionics Systems Conference, 2003. DASC '03. The 22nd, Vol. 1, 2003, pp. 5.B.4-5.1-9.
  294. C.-L. Wu, R. E. Caves, Aircraft operational costs and turnaround efficiency at airports, Journal of Air Transport Management 6 (2000) 201-208.
  295. S. S. Allan, J. A. Beesley, J. E. Evans, S. G. Gaddy, Analysis of delay causality at newark international airport, in: Procs. 4th USA/Europe Air Traffic Manage- ment R & D Seminar, 2001.
  296. M. Jetzki, The propagation of air transport delays in Europe, Ph.D. thesis, De- partment of Airport and Air Transportation Research RWTH, Aachen University (2009).
  297. A. Churchill, D. Lovell, M. Ball, Examining the temporal evolution of propa- gated delays at individual airports: Case studies, in: Procs. 7th USA/Europe Air Traffic Management R & D Seminar, 2007.
  298. P. Fleurquin, J. J. Ramasco, V. M. Eguiluz, Systemic delay propagation in the US airport network, Scientific Reports 3 (2013) 1159.
  299. L. Lacasa, M. Cea, M. Zanin, Jamming transition in air transportation networks, Physica A: Statistical Mechanics and its Applications 388 (18) (2009) 3948- 3954.
  300. D. R. Wuellner, S. Roy, R. M. D'Souza, Resilience and rewiring of the passenger airline networks in the United States, Physical Review E 82 (2010) 056101.
  301. T. Ezaki, K. Nishinari, Potential global jamming transition in aviation networks, Physical Review E 90 (2014) 022807.
  302. O. Lordan, J. M. Sallan, P. Simo, Study of the topology and robustness of air- line route networks from the complex network approach: a survey and research agenda, Journal of Transport Geography 37 (2014) 112-120.
  303. L. Schaefer, D. Millner, Flight delay propagation analysis with the Detailed Pol- icy Assessment Tool, in: 2001 IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, 2001, pp. 1299-1303 vol.2.
  304. J. M. Rosenberg, A. J. Schaefer, D. Goldsman, E. L. Johnson, A. Kleywegt, G. L. Nemhauser, A stochastic model of airline operations, Transportation Science 2002 (2002) 357-377.
  305. M. Janić, Modeling the Large Scale Disruptions of an Airline Network, Journal of Transportation Engineering 131 (2005) 249-260.
  306. N. Pyrgiotis, K. M. Malone, A. Odoni, Modelling delay propagation within an airport network, Transportation Research Part C: Emerging Technologies 27 (2013) 60-75.
  307. B. Campanelli, P. Fleurquin, C. Ciruelos, A. Arranz, V. M. Eguiluz, J. J. Ra- masco, Modelling delay propagation trees for scheduled flights, in: Procs. 5th Sesar Innovation Days, 2015.
  308. A. Fremont, Global maritime networks: The case of maersk, Journal of Trans- port Geography 15 (2007) 431-442.
  309. Y. Hu, D. Zhu, Empirical analysis of the worldwide maritime transportation net- work, Physica A: Statistical Mechanics and its Applications 388 (2009) 2061- 2071.
  310. C. Ducruet, Network diversity and maritime flows, Journal of Transport Geog- raphy 30 (2013) 77-88.
  311. O. Woolley-Meza, C. Thiemann, D. Grady, J. J. Lee, H. Seebens, B. Blasius, D. Brockmann, Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements, The European Physical Journal B 84 (2011) 589-600.
  312. R. P. Keller, J. M. Drake, M. B. Drew, D. M. Lodge, Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network, Diversity and Distributions 17 (2010) 93-102.
  313. H. Seebens, M. T. Gastner, B. Blasius, The risk of marine bioinvasion caused by global shipping, Ecology Letters 16 (2013) 782-790.
  314. M. Adnan, P. A. Longley, S. M. Khan, Social dynamics of Twitter usage in London, Paris, and New York City, First Monday 19 (5).
  315. R. Louf, M. Barthelemy, Modeling the Polycentric Transition of Cities, Physical Review Letters 111 (19) (2013) 198702.
  316. L. Sun, K. W. Axhausen, D.-H. Lee, X. Huang, Understanding metropolitan patterns of daily encounters, Proceedings of the National Academy of Sciences 110 (34) (2013) 13774-13779.
  317. F. S. Chapin, Human activity patterns in the city: things people do in time and in space, Wiley, New York, 1974.
  318. S. Hanson, G. Giuliano, The Geography of Urban Transportation, Guilford Press, 2004.
  319. R. G. Golledge, R. J. Stimson, Spatial Behavior: A Geographic Perspective, Guilford Press, 1997.
  320. C. Ratti, D. Frenchman, R. M. Pulselli, S. Williams, Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis, Environment and Planning B: Planning and Design 33 (5) (2006) 727-748.
  321. F. Calabrese, C. Ratti, Real time rome, Networks and Communication studies 20 (3-4) (2006) 247-258.
  322. J. Reades, F. Calabrese, A. Sevtsuk, C. Ratti, Cellular Census: Explorations in Urban Data Collection, IEEE Pervasive Computing 6 (3) (2007) 30-38.
  323. F. Girardin, F. Calabrese, F. D. Fiore, C. Ratti, J. Blat, Digital Footprinting: Uncovering Tourists with User-Generated Content, IEEE Pervasive Computing 7 (4) (2008) 36-43.
  324. A.-M. Olteanu Raimond, T. Couronné, J. Feng-Chong, Z. Smoreda, Le Paris des visiteurs étrangers, qu'en disent les téléphones mobiles ? Inférence des pra- tiques spatiales et fréquentations des sites touristiques en Île-de-France, Revue internationale de géomatique 22 (3) (2012) 413-437.
  325. J. Fen-Chong, Organisation spatio-temporelle des mobilités révélées par la téléphonie mobile en ile-de-france, Ph.D. thesis, Université Panthéon-Sorbonne -Paris I (2012).
  326. W.-H. Chong, B. T. Dai, E.-P. Lim, Not All Trips Are Equal: Analyzing Foursquare Check-ins of Trips and City Visitors, in: Proceedings of the 2015 ACM on Conference on Online Social Networks, COSN '15, ACM, New York, NY, USA, 2015, pp. 173-184.
  327. F. Calabrese, M. Diao, G. Di Lorenzo, J. Ferreira Jr., C. Ratti, Understanding individual mobility patterns from urban sensing data: A mobile phone trace ex- ample, Transportation Research Part C: Emerging Technologies 26 (2013) 301- 313.
  328. S. Desu, Untangling the effects of residential segregation on individual mobility, Ph.D. thesis, MIT (2016).
  329. C. Roth, S. M. Kang, M. Batty, M. Barthélemy, Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows, PLoS ONE 6 (1) (2011) e15923.
  330. T. Louail, M. Lenormand, O. G. Cantu Ros, M. Picornell, R. Herranz, E. Frias- Martinez, J. J. Ramasco, M. Barthelemy, From mobile phone data to the spatial structure of cities, Scientific Reports 4.
  331. R. Gallotti, A. Bazzani, S. Rambaldi, M. Barthelemy, A stochastic model of ran- domly accelerated walkers for human mobility, arXiv:1509.03752 [cond-mat, physics:physics].
  332. R. Gallotti, A. Bazzani, S. Rambaldi, Understanding the variability of daily travel-time expenditures using GPS trajectory data, EPJ Data Science 4 (1) (2015) 1-14.
  333. T. Louail, M. Lenormand, M. Picornell, O. García Cantú, R. Herranz, E. Frias- Martinez, J. J. Ramasco, M. Barthelemy, Uncovering the spatial structure of mobility networks, Nature Communications 6 (2015) 6007.
  334. C. Kang, X. Ma, D. Tong, Y. Liu, Intra-urban human mobility patterns: An urban morphology perspective, Physica A: Statistical Mechanics and its Applications 391 (4) (2012) 1702-1717.
  335. A. Lima, R. Stanojevic, D. Papagianniaki, P. Rodriguez, M. C. Gonzalez, Under- standing individual routing behaviour, Journal of The Royal Society Interface.
  336. R. Gallotti, M. A. Porter, M. Barthelemy, Lost in transportation: Information measures and cognitive limits in multilayer navigation, Science Advances 2 (2) (2016) e1500445.
  337. O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, 2000.
  338. M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
  339. A. J. Tatem, Mapping population and pathogen movements, International Health 6 (2014) 5-11.
  340. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics 87 (2015) 925- 979.
  341. D. Brockmann, D. Helbing, The Hidden Geometry of Complex, Network- Driven Contagion Phenomena, Science 342 (2013) 1337-1342.
  342. L. A. Rvachev, I. M. Longini, A mathematical model for the global spread of influenza, Mathematical Biosciences 75 (1) (1985) 3-22.
  343. A. Flahault, A.-J. Valleron, A method for assessing the global spread of HIV-1 infection based on air travel, Mathematical Population Studies 3 (1992) 161- 171.
  344. L. Hufnagel, D. Brockmann, T. Geisel, Forecast and control of epidemics in a globalized world, Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15124-15129.
  345. R. F. Grais, J. H. Ellis, G. E. Glass, Assessing the impact of airline travel on the geographic spread of pandemic influenza, European Journal of Epidemiology 18 (2003) 1065-1072.
  346. V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics, Proceedings of the National Academy of Sciences of the United States of Amer- ica 103 (2006) 2015-2020.
  347. M. Tizzoni, P. Bajardi, C. Poletto, J. J. Ramasco, D. Balcan, B. Gonc ¸alves, N. Perra, V. Colizza, A. Vespignani, Real-time numerical forecast of global epi- demic spreading: case study of 2009 A/H1N1pdm, BMC Medicine 10 (2012) 165.
  348. C. T. Bauch, J. O. Lloyd-Smith, M. P. Coffee, A. P. Galvani, Dynamically mod- eling sars and other newly emerging respiratory illnesses: past, present, and future, Epidemiology 16 (2005) 791-801.
  349. Z. Huang, A. J. Tatem, Global malaria connectivity through air travel, Malaria Journal 12 (2013) 269.
  350. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak, Global trends in emerging infectious diseases, Nature 451 (2008) 990-993.
  351. M. F. C. Gomes, A. Pastore y Piontti, L. Rossi, D. Chao, I. Longini, M. E. Halloran, A. Vespignani, Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLoS Currents.
  352. G. Lawyer, Measuring the potential of individual airports for pandemic spread over the world airline network, BMC Infectious Diseases 16 (2016) 70.
  353. N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, D. S. Burke, Strategies for containing an emerg- ing influenza pandemic in Southeast Asia, Nature 437 (2005) 209-214.
  354. P. M. imon, J. Esser, K. Nagel, Simple queuing model applied to the city of portland, International Journal of Modern Physics 10 (1999) 941-960.
  355. S. Eubank, H. Guclu, V. S. Anil Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Modelling disease outbreaks in realistic urban social networks, Nature 429 (2004) 180-184.
  356. I. M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. A. T. Cummings, M. E. Halloran, Containing Pandemic Influenza at the Source, Sci- ence 309 (2005) 1083-1087.
  357. N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, D. S. Burke, Strategies for mitigating an influenza pandemic, Nature 442 (2006) 448- 452.
  358. T. C. Germann, K. Kadau, I. M. Longini, C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proceedings of the National Academy of Sciences of the United States of America 103 (2006) 5935-5940.
  359. M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A. T. Cummings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann, D. Wagener, R. Beck- man, K. Kadau, C. Barrett, C. A. Macken, D. S. Burke, P. Cooley, Modeling targeted layered containment of an influenza pandemic in the United States, Pro- ceedings of the National Academy of Sciences of the United States of America 105 (2008) 4639-4644.
  360. M. Ajelli, S. Merler, The impact of the unstructured contacts component in in- fluenza pandemic modeling, PLoS 3 (e1519) (2008) 1337-1342.
  361. M. Ajelli, B. Gonc ¸alves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco, S. Merler, A. Vespignani, Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models, BMC Infec- tious Diseases 10 (2010) 190.
  362. M. L. Ciofi degli Atti, S. Merler, C. Rizzo, M. Ajelli, M. Massari, P. Manfredi, C. Furlanello, G. Scalia Tomba, M. Iannelli, Mitigation measures for pandemic influenza in italy: An individual based model considering different scenarios, PLoS ONE 3 (2008) e1790.
  363. S. Merler, M. Ajelli, The role of population heterogeneity and human mobility in the spread of pandemic influenza, Proceedings of the Royal Society of London B: Biological Sciences 277 (2009) 557-565.
  364. S. Merler, M. Ajelli, A. Pugliese, N. M. Ferguson, Determinants of the spa- tiotemporal dynamics of the 2009 h1n1 pandemic in europe: implications for real-time modelling, PLoS Computational Biology 7 (2011) e1002205.
  365. S. Merler, M. Ajelli, L. Fumanelli, A. Vespignani, Containing the accidental laboratory escape of potential pandemic influenza viruses, BMC Medicine 11 (2013) 252.
  366. L. Sattenspiel, K. Dietz, A structured epidemic model incorporating geographic mobility among regions, Mathematical Biosciences 128 (1995) 71-91.
  367. V. Colizza, A. Vespignani, Invasion Threshold in Heterogeneous Metapopula- tion Networks, Physical Review Letters 99 (2007) 148701.
  368. D. Balcan, H. Hu, B. Goncalves, P. Bajardi, C. Poletto, J. J. Ramasco, D. Paolotti, N. Perra, M. Tizzoni, V. Colizza, et al., Seasonal transmission po- tential and activity peaks of the new influenza a (h1n1): a monte carlo likelihood analysis based on human mobility, BMC medicine 7 (1) (2009) 1.
  369. C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. V. Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N. M. Fergu- son, A. Rambaut, O. G. Pybus, H. Lopez-Gatell, C. M. Alpuche-Aranda, I. B. Chapela, E. P. Zavala, D. M. E. Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth, T. W. R. P. A. Collaboration, Pandemic Potential of a Strain of Influenza A (H1N1): Early Findings, Science 324 (2009) 1557-1561.
  370. V. Colizza, A. Vespignani, N. Perra, C. Poletto, B. Gonc ¸alves, H. Hu, D. Balcan, D. Paolotti, W. Van den Broeck, M. Tizzoni, P. Bajardi, J. J. Ramasco, Estimate of novel influenza a/h1n1 cases in mexico at the early stage of the pandemic with a spatially structured epidemic model, PLoS Currents 1 (2009) RRN1129.
  371. B. Gonc ¸alves, D. Balcan, A. Vespignani, Human mobility and the worldwide impact of intentional localized highly pathogenic virus release, Scientific Re- ports 3 (2013) 810.
  372. C. Poletto, M. F. C. Gomes, A. P. y Piontti, L. Rossi, L. Bioglio, D. L. Chao, I. M. Longini, M. E. Halloran, V. Colizza, A. Vespignani, Assessing the impact of travel restrictions on international spread of the 2014 West African Ebola epidemic, Euro Surveillance 19 (2014) 20936.
  373. P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, A. Vespignani, Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic, PLoS ONE 6 (2011) e16591.
  374. S. Meloni, N. Perra, A. Arenas, S. Gómez, Y. Moreno, A. Vespignani, Modeling human mobility responses to the large-scale spreading of infectious diseases, Scientific Reports 1 (2011) 62.
  375. A. Apolloni, C. Poletto, J. J. Ramasco, P. Jensen, V. Colizza, Metapopulation epidemic models with heterogeneous mixing and travel behaviour, Theoretical Biology and Medical Modelling 11 (2014) 3.
  376. T. Jia, B. Jiang, K. Carling, M. Bolin, Y. Ban, An empirical study on human mobility and its agent-based modeling, Journal of Statistical Mechanics: Theory and Experiment 2012 (2012) P11024.
  377. A. Wesolowski, G. Stresman, N. Eagle, J. Stevenson, C. Owaga, E. Marube, T. Bousema, C. Drakeley, J. Cox, C. O. Buckee, Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones, Scientific Reports 4 (2014) 5678.
  378. M. Lenormand, B. Gonc ¸alves, A. Tugores, J. J. Ramasco, Human diffusion and city influence, Journal of The Royal Society Interface 12 (2015) 20150473.
  379. S. Harper, R. Stevens, C. Goble, Towel: Real world mobility on the web, Computer-Aided Design of User Interfaces II (1999) 305-314.
  380. C. Goble, S. Harper, R. Stevens, The travails of visually impaired web travellers, Proceedings of the eleventh ACM on Hypertext and hypermedia (2000) 1-10.
  381. H. Ritchie, P. Blanck, The promise of the internet for disability: A study of on-line services and web site accessibility at centers for independent living, Be- havioral Sciences and the Law 21 (1) (2003) 5-26.
  382. G. Nimrod, Seniors' online communities: A quantitative content analysis, Gerontologist 50 (3) (2010) 382-392.
  383. S. R. Cotten, W. A. Anderson, B. M. McCullough, Impact of internet use on loneliness and contact with others among older adults: Cross-sectional analysis, Journal of Medical Internet Research 15 (2) (2013) 1-13.
  384. Bo Xie, Using the internet for offline relationship formation, Social Science Computer Review 25 (3) (2007) 396-404.
  385. M. Aouragh, Confined offline, traversing online palestinian mobility through the prism of the internet, Mobilities 6 (November 2014) (2011) 375-397.
  386. M. Szell, R. Sinatra, G. Petri, S. Thurner, V. Latora, Understanding mobility in a social petri dish, Scientific Reports 2 (2012) 1-6. arXiv:1112.1220.
  387. S. Shen, N. Brouwers, A. Iosup, Human mobility in virtual and real worlds: Characterization, modeling, and implications, Parallel and Distributed Systems Report Series.
  388. S. Shen, N. Brouwers, A. Iosup, D. Epema, Characterization of human mobil- ity in networked virtual environments, Proceedings of Network and Operating System Support on Digital Audio and Video Workshop (2014) 13:13--13:18.
  389. Z.-D. Zhao, Z.-G. Huang, L. Huang, H. Liu, Y.-C. Lai, Scaling and correlation of human movements in cyberspace and physical space, Physical Review E 90 (5) (2014) 050802.
  390. Y. Cui, Y. Cui, V. Roto, V. Roto, How people use the web on mobile devices, WWW '08 Proceedings of the 17th international conference on World Wide Web (2008) 905-914.
  391. H. S. Barbosa, F. B. de Lima Neto, A. Evsukoff, R. Menezes, Returners and explorers dichotomy in web browsing behaviora human mobility approach, in: Complex Networks VII, Springer, 2016, pp. 173-184.
  392. D. A. Hantula, D. D. Brockman, C. L. Smith, Online shopping as foraging: The effects of increasing delays on purchasing and patch residence, IEEE Transac- tions on Professional Communication 51 (2) (2008) 147-154.
  393. P. Pirolli, S. Card, Information Foraging, Psychlogical Review (January) (1999) 643-675.
  394. E. Stenstrom, P. Stenstrom, G. Saad, S. Cheikhrouhou, Online hunting and gath- ering: An evolutionary perspective on sex differences in website preferences and navigation, IEEE Transactions on Professional Communication 51 (2) (2008) 155-168.
  395. D. Stephens, J. Brown, R. Ydenberg, Foraging. Behaviour and ecology., Vol. 1, 2007.
  396. L. Rendell, L. Fogarty, W. J. Hoppitt, T. J. Morgan, M. M. Webster, K. N. La- land, Cognitive culture: theoretical and empirical insights into social learning strategies, Trends in cognitive sciences 15 (2) (2011) 68-76.
  397. S. Wasserman, Social Network Analysis: Methods and Applications, Vol. 8, Cambridge University Press, Cambridge, 1994.
  398. B. Wellman, B. Leighton, Networks, neighborhoods, and communities ap- proaches to the study of the community question, Urban Affairs Review 14 (3) (1979) 363-390.
  399. C. Tilly, Transplanted networks, in: Yans-McLaughlin (Ed.), Immigration Re- considered. History, Sociology, and Politics, Oxford University Press, 1986.
  400. F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, Y. Åberg, The web of human sexual contacts, Nature 411 (6840) (2001) 907-908.
  401. T. Tassier, F. Menczer, Social network structure, segregation, and equality in a labor market with referral hiring, Journal of Economic Behavior & Organization 66 (3) (2008) 514-528.
  402. A.-L. Barabási, Network science, Philosophical Transactions of the Royal Soci- ety of London A: Mathematical, Physical and Engineering Sciences 371 (1987) (2013) 20120375.
  403. B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems, Academic press, 2000.
  404. J. M. Epstein, Nonlinear dynamics, mathematical biology, and social science, Westview Press, 1997.
  405. D. C. Lane, You just don't understand me: Modes of failure and success in the discourse between system dynamics and discrete event simulation.
  406. M. Wooldridge, N. R. Jennings, Intelligent agents: Theory and practice, The knowledge engineering review 10 (02) (1995) 115-152.
  407. E. Bonabeau, Agent-based modeling: Methods and techniques for simulating human systems, Proceedings of the National Academy of Sciences 99 (suppl 3) (2002) 7280-7287.
  408. W. H. Press, B. P. Flannery, S. A. Teukolsky, Numerical Recipes in C: the art of scientific computing, Cambridge University Press, 1997.
  409. A. Clauset, C. R. Shalizi, M. E. Newman, Power-law distributions in empirical data, SIAM review 51 (4) (2009) 661-703.