Spatiotemporal Patterns of Urban Human Mobility
2012, Journal of Statistical Physics
https://doi.org/10.1007/S10955-012-0645-0Abstract
The modeling of human mobility is adopting new directions due to the increasing availability of big data sources from human activity. These sources enclose digital information about daily visited locations of a large number of individuals. Examples of these data include: mobile phone calls, credit card transactions, bank notes dispersal, check-ins in internet applications, among several others. In this study, we consider the data obtained from smart subway fare card transactions to characterize and model urban mobility patterns. We present a simple mobility model for predicting peoples' visited locations using the popularity of places in the city as an interaction parameter between different individuals. This ingredient is sufficient to reproduce several characteristics of the observed travel behavior such as: the number of trips between different locations in the city, the exploration of new places and the frequency of individual visits of a particular location. Moreover, we indicate the limitations of the proposed model and discuss open questions in the current state of the art statistical models of human mobility.
References (31)
- Kitamura R, Chen C, Pendyala R M and Narayaran R, 2000, Transportation 27(1) 25-51
- Bhat C R and Koppelman F S, 1999, Activity-based modeling for travel demand (R. Hall)
- Ukkusuri S V, Tom V M and Waller S T, 2007, Computer-Aided Civil and Infrastructure Engineering 22(1) 921
- Eubank S, Guclu H, Kumar V S A, Marathe M V, Srinivasan A, Toroczkai Z and Wang N, 2004, Nature 429 180184
- Hufnagel L, Brockmann D and Geisel T, 2004, Proc. Nat. Acad. Sci. 101 1512415129
- Colizza V, Barrat A, Barthélémy M, Valleron A-J and Vespignani A, 2007, PLoS Medicine 4 95110
- Kleinberg J, 2007, Nature 449 287288
- Nicolaides C, Cueto-Felgueroso L, González M C and Juanes R, 2012, PLoS ONE 7(7):e40961
- Hanson S, 2005, Proc. Nat. Acad. Sci. 102 1530115306
- Rhee I, Shin M, Hong S, Lee K, and Chong S, 2008, Proceedings of INFOCOM, Phoenix, USA
- Hanson S and Huff J, 1988, Transportation 15 111-135
- Vilhelmson B, 1999, GeoJournal 48(3) 177-185
- Ewing R and Cervero R, 2001, Transportation Research Record 1780 87-113
- Schlich R and Axhausen K, 2003, Transportation 30(1) 13-36
- Maat K, van Wee B and Stead D, 2005, Environment and Planning B: Planning and Design 32 33-46
- Bagchi M and White P R, 2005, Transport Policy 12 464474
- Seaborn C, Attanucci J and Wilson N H M, 2009, Transportation Research Record 2121 55-62
- Roth C, Kang S M, Batty M and Barthélémy M, 2011, PLoS ONE 6(1):e15923
- Ben-Akiva M and Bierlaire M, 1999, Discrete choice methods and their applications to short term travel decisions (R. Hall)
- Cetin N, Nagel K, Raney B and Voellmy A, 2002, Computer Physics Communications 147(1-2) 559-564
- Axhausen K W, 2008, Environment and Planning B: Planning and Design 35(6) 981-996
- Newman M E J, 2011, Am. J. Phys. 79 800-810 (2011)
- Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A and Stanley H E, 1996, Nature 381, 413-415
- Edwards A M, Phillips R A, Watkins N W, Freeman M P, Murphy E J, Afanasyev V, Buldyrev S V, da Luz M G E, Raposo E P, Stanley H E and Viswanathan G M, 2007, Nature 449 1044-1048
- Brockmann D, Hufnagel L and Geisel T, 2006, Nature 439 462465
- González M C, Hidalgo C A and Barabási A-L, 2008, Nature 453 779782
- Barabási A-L, 2005, Nature 435 207-211
- Candia J, González M C, Wang P, Schoenharl T, Madey G and Barabási A-L, 2008, Journal of Physics A: Mathematical and Theoretical 41 224015
- Joly I, 2004, Travel time budget-decomposition of the worldwide mean Conference of the International Association of Time-Use Research, 27-29 October, Rome, Italy.
- Song C, Koren T, Wang P and Barabási A-L, 2010, Nature Phys. 6 818-823
- Balcan D, Colizza V, Goncalves B, Hu H, Ramasco J J and Vespignani A, 2009, Proc. Nat. Acad. Sci. 106 2148421489