Genetic Fuzzy System for Financial Management
Cybernetics and Information Technologies
https://doi.org/10.2478/CAIT-2018-0025Abstract
This paper discusses genetic fuzzy systems – hybrid systems of artificial intelligence combining the potential of fuzzy sets for modeling approximate reasoning with the abilities of genetic algorithms for finding optimal solutions. The use of genetic algorithms for optimizing the parameters of a fuzzy system is demonstrated on GFSSAM.
References (20)
- G e o r g i e v a, P. V. FSSAM: A Fuzzy Rule-Based System for Financial Decision Making in Real Time. Handbook of Fuzzy Sets Comparison -Theory, Algorithms and Applications. Science Gate Publishing, 2016, pp. 121-148.
- H e r r e r a, F., M. L o z a n o, E. H e r r e r a-V i e d m a, J. V e r d e g a y. Fuzzy Tools to Improve Genetic Algorithms. -In: Proc. of European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1994, pp. 1532-1539.
- P e n e v a, V., I. P o p c h e v. Fuzzy Logic Operators in Decision-Making. -International Journal Cybernetics and Systems, Robert Trappl, Ed., Vol. 30, 1999, No 6, pp. 725-745.
- G e o r g i e v a, P. V., I. P o p c h e v, S. S t o y a n o v. A Multi-Step Procedure for Asset Allocation in Case of Limited Resources. -Cybernetics and Information Technologies, Vol. 15, 2015, No 3, pp. 41-51.
- P e n e v a, V., I. P o p c h e v. Multicriteria Decision Making Based on Fuzzy Relations. - Cybernetics and Information Technologies, Vol. 8, 2008, No 4, pp. 3-12.
- G e o r g i e v a , P. V. Applying FSSAM for Currency Rates Forecasting. -In: Transactions on Machine Learning and Artificial Intelligence, Manchester, SSE UK, Vol. 4, 2016, No 3, pp. 30-40.
- G e o r g i e v a, P. V. Fuzzy Rule-Based Systems for Decision-Making. -Engineering Sciences, BAS, Vol. LIII, 2016, No 1, pp. 5-16.
- M a v r o v, D., I. R a d e v a, K. A t a n a s s o v, L. D o u k o v s k a, I. K a l a y k o v. InterCriteria Software Design: Graphic Interpretation within the Intuitionistic Fuzzy Triangle. -In: International Symposium on Business Modeling and Software Design (BMSD'15), Milano, 2015, pp. 279-283.
- P e n e v a, V., I. P o p c h e v. Fuzzy Multi-Criteria Decision Making Algorithms. -Compt. Rend. Acad. bulg. Sci., Vol. 63, 2010, No 7, pp. 979-991.
- Z a f a r i, A. Developing a Fuzzy Inference System by Using Genetic Algorithm and Expert Knowledge. Netherlands, Enschede, 2014.
- Z a d e h, L. A Theory of Approximate Reasoning. -Machine Intelligence, Vol. 9, 1979, pp. 149-194.
- P o p c h e v, I., P. G e o r g i e v a. A Fuzzy Approach for Solving Multicriteria Investment Problems. -In: Innovative Techniques in Instruction Technology, e-Learning, e-Assessment, and Education. M. Iskander, Ed. Springer Science+Business Media B. V., 2008, pp. 427-431.
- S u g e n o, M. Industrial Applications of Fuzzy Control. Japan, Elsevier Science Pub, Co., 1985.
- M e l i n, P., O. C a s t i l l o, E. R a m í r e z. Analysis and Design of Intelligent Systems Using Soft Computing Techniques. -Series: Advances in Soft Computing, Vol. 41, 2007.
- J a n g, R. Fuzzy Inference Systems. NJ, Prentice-Hall, 1997.
- G o l d b e r g, D., K. Deb. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. -In: Foundations of Genetic Algorithms, Los Altos, Morgan Kaufmann, 1991, pp. 69-93.
- P o p c h e v, I., V. P e n e v a. An Algorithm for Comparison of Fuzzy Sets. -Fuzzy Sets and Systems, Elsevier Science Publishers, Norht-Holland, Amsterdam, Vol. 60, 1993, No 1, pp. 59-65.
- R a d e v a, I. Multicriteria Fuzzy Sets Application in Economic Clustering Problems. -Cybernetics and Information Technologies, Vol. 17, 2017, No 3, pp. 29-46.
- R a d e v a, I. Multi-Criteria Models for Cluster Design. -Cybernetics and Information Technologies, Vol. 13, 2013, No 1, pp. 18-33.
- Received 11.01.2018; Second Version 26.02.2018; Accepted 15.03.2018