Academia.eduAcademia.edu

Outline

Some questions arising from the homogeneous Banach space problem

1993, Contemporary Mathematics

https://doi.org/10.1090/CONM/144/1209445

Abstract

We review the current state of the homogeneous Banach space problem. We then formulate several questions which arise naturally from this problem, some of which seem to be fundamental but new. We give many examples defining the bounds on the problem. We end with a simple construction showing that every infinite dimensional Banach space contains a subspace on which weak properties have become stable (under passing to further subspaces). Implications of this construction are considered.

References (33)

  1. S. Banach, Theorie des operations lineaires, Warszawa, 1932.
  2. J. Bourgain, On finite dimensional homogeneous Banach spaces, Geometric Aspects of Functional Analysis (J. Lindenstrauss and V. D. Milman, eds.), Springer Lecture Notes, 1317, pp. 232-239.
  3. J. Bourgain, P. G. Casazza, J. Lindenstrauss, and L. Tzafriri, Banach spaces with a unique unconditional basis, up to a permutation, Memoirs, AMS, 322 (1985).
  4. P. G. Casazza, W. B. Johnson, and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98.
  5. P. G. Casazza, N. J. Kalton, and L. Tzafriri, Decompositions of Banach Lattices into direct sums, Trans. AMS, no. 2, 304 (1987), 771-800.
  6. P. G. Casazza and E. Odell, Tsirelson's space and minimal subspaces, Longhorn Notes, University of Texas, 1982-83.
  7. P. G. Casazza and T. Shura, Tsirelson's space, Springer Lecture Notes, 1362 (1989).
  8. I. S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), 263-276.
  9. Y, Gordon and D. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27-48.
  10. W. T. Gowers, A space not containing c 0 , l 1 or a reflexive subspace, (preprint).
  11. W. T. Gowers, On the hyperplane problem, (preprint).
  12. W. T. Gowers and B. Maurey, A counterexample to the unconditional basic sequence prob- lem, (preprint).
  13. R. C. James, A nonreflexive Banach space that is uniformly nonoctahedral, Israel J. Math. 18 (1974), 145-155.
  14. W. B. Johnson, Homogeneous Banach spaces, Geometric Aspects of Functional Analysis (J. Lindenstrauss and V. D. Milman, eds.), Springer Lecture Notes, 1317, 201-203.
  15. W. B. Johnson, Banach spaces all of whose subspaces have the approximation property, Special Topics of Applied Math., functional Analysis, Numerical Analysis and Opimiza- tion, Proceedings Bonn 1979, (J. Frehse, D. Pallaschke, and V. Trottenberg, eds.), North Holland, 1980, pp. 15-26.
  16. Ryszard Komorowski, Weak Hilbert spaces without unconditional bases, (preprint).
  17. J. L. Krivine, Sous-espaces de demension finie des espaces de Banach re'ticulés, Ann. of Math. 104 (1976), 1-29.
  18. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Berlin, Springer, 1977.
  19. Classical Banach spaces II, Berlin, Springer, 1979.
  20. P. Mankiewicz and N. Tomczak-Jaegermann, Random subspaces and quotients of finite dimensional Banach spaces, Odense University, 1989, (preprint no. 8).
  21. A solution of the finite-dimensional homogeneous Banach space problem, (preprint).
  22. Schauder bases in quotients of subspaces of l 2 (X), (preprint).
  23. V. Mascioni, On Banach spaces isomorphic to their duals, (preprint).
  24. V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Springer Lecture Notes 1200 (1986).
  25. V. Milman and N. Tomczak-Jaegermann, (preprint).
  26. N. Nielsen and N. Tomczak-Jaegermann, On subspaces of Banach spaces with property (H) and weak Hilbert spaces, (preprint).
  27. E. Odell and T. Schlumprecht, l p is distortable, 1 < p < ∞, (preprint).
  28. G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.
  29. H. P. Rosenthal, On a Theorem of J. L. Krivine concerning block finite -representability of l p in general Banach spaces, J. Functional Anal. 28 (1978), 197-225.
  30. T. Schlumprecht, An arbitrarily distortable Banach space, (preprint).
  31. A complementably minimal Banach space not containing c 0 or l p , (preprint).
  32. B. S. Tsirelson, Not every Banach space contains l p or c 0 , Functional Anal. & Appl. 8 (1974), 138-141.
  33. P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces II, Studia math. 47 (1973), 197-206.