A characterization of minimal homogeneous Banach spaces
1981, Proceedings of the American Mathematical Society
https://doi.org/10.1090/S0002-9939-1981-0589135-9Abstract
Let G G be a locally compact group. It is shown that for a homogeneous Banach space B B on G G satisfying a slight additional condition there exists a minimal space B min {B_{\min }} in the family of all homogeneous Banach spaces which contain all elements of B B with compact support. Two characterizations of B min {B_{\min }} are given, the first one in terms of "atomic" representations. The equivalence of these two characterizations is derived by means of certain (bounded) partitions of unity which are of interest for themselves.
References (17)
- J. P. Bertrandias, C. Datry and C Dupuis, Unions et intersections Lp invariantes par translation ou convolution, Ann. Inst. Fourier (Grenoble) 28 (1978), 58-84.
- R. C. Busby and H. A. Smith, Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. (to appear).
- W. C. Connett and A. L. Schwartz, The theory of ultraspherical multipliers, Mem. Amer. Math. Soc. No. 183 (1977).
- W. R. Emerson and F. P. Greanleaf, Covering properties and Foelner conditions for locally compact groups, Math. Z. 102 (1967), 370-384.
- P. Eymard, Algebres Ap et convoluteurs de Lp, Séminaire Bourbaki No. 367, Novembre 1969.
- H. G. Feichtinger, A characterization of Wiener's algebra on locally compact groups, Arch. Math. (Basel) 29 (1977), 136-140.
- _, The minimal strongly character invariant Segal algebra. I, II (preprints, Wien 1978/79).
- F. Holland, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc. (2) 10 (1975), 295-305.
- Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968.
- H. E. Krogstad, Multipliers of Segal algebras. Math. Scand. 38 (1976), 285-303.
- H. Leptin, On onesided harmonic analysis in non commutative locally compact groups, J. Reine Angew. Math. 306 (1979), 122-153.
- T. S. Liu, A. van Rooij and J. K. Wang, On some group algebra modules related to Wiener's algebra M¡, Pacific J. Math. 55 (1974), 507-520.
- P. Milnes and J. V. Bondar, A simple proof of a covering property of locally compact groups, Proc. Amer. Math. Soc. 73 (1979), 117-118.
- D. Poguntke, Gewisse Segaische Algebren auf lokalkompakten Gruppen, Arch. Math. Basel 33 (1980), 454-460.
- H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, London, 1968. 16._, Ll-algebras and Segal algebras, Lecture Notes in Math., Vol. 231, Springer-Verlag, Berlin and New York, 1971.
- H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978. 18._, Spaces of Besov-Hardy-Sobolev type, Teubner, Leipzig, 1978.
- H. C. Wang, Homogeneous Banach algebras, Lecture Notes in Pure and Appl. Math., vol. 29, Marcel Dekker, New York, 1977. Institut für Mathematik, Universität Wien, 1090 Wien, Austria