Academia.eduAcademia.edu

Outline

Separable and Nonseparable Multiwavelets in Multiple Dimensions

2002, Journal of Computational Physics

https://doi.org/10.1006/JCPH.2001.6743

Abstract

We report on a method of constructing multidimensional biorthogonal interpolating multiwavelets. The approach is based upon polynomial interpolation in R d (C. de Boor and A. Ron, Math. Comput. 58, 198 (1997)) and an extension of the lifting scheme (J. Kovačević and W. Sweldens, IEEE Trans. Image Process. 9, No. 3, 480 (2000)). The constructed wavelets have compact support, are nearly isotropic, and retain partial scale invariance leading to a fast and efficient multidimensional wavelet transform. We demonstrate an implementation for these wavelets of variable polynomial order up to four dimensions. Finally, we show that these wavelets have a much sparser representation of discontinuous functions as compared to tensor product wavelets, which allows for a more compact and efficient representation.

References (38)

  1. O. K. Anderson, Linear methods in band theory, Phys. Rev. B 12, No. 8, 3060 (1975).
  2. Sankar Basu, Multi-dimensional filter banks and wavelets-A system theoretic perspective, J. Franklin Inst. 335B, No. 8, 1367 (1998).
  3. G. Beylkin, Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math. 44, No. 2, 141 (1991).
  4. S. F. Boys, Electronic wave functions. II. A calculation for the ground state of the beryllium atom, Proc. Roy. Soc. London Ser. A 201, 125 (1950).
  5. M. E. Brewster, G. I. Fann, and Z. Y. Yang, Wavelets for electronic structure calculations, J. Math Chem. 22, Nos. 2-4, 117 (1997).
  6. M. Challacombe, A simplified density matrix minimization for linear scaling self-consistent field theory, J. Chem. Phys. 110, No. 5, 2332 (1999).
  7. K. Charles, Chui Montefusco, Laura Montefusco, and Luigia Puccio, Eds. Wavelets: Theory, Algorithms, and Applications, Wavelet Analysis and Its Applications (Academic Press, San Diego, 1994), Vol. 5.
  8. Chen and Debao, Cardinal Spline Wavelets, Ph.D. thesis (University of Texas at Austin, 1994).
  9. K. Cho, T. A. Arias, J. D. Joannopoulos, and P. K. Lam, Wavelets in electronic-structure calculations, Phys. Rev. Lett. 71, No. 12, 1808 (1993).
  10. C. K. Chui, An Introduction to Wavelets (Academic Press, San Diego, 1992).
  11. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41, 909 (1988).
  12. I. Daubechies, Two recent results on wavelets: Wavelet bases for the interval, and biorthogonal wavelets diagonalizing the derivative operator, in Recent Advances in Wavelet Analysis, edited by Larry L. Schumaker and Glenn Webb (Academic Press, San Diego 1994), p. 237.
  13. I. Daubechies and J. Lagarias, Two-scale difference equations, I. SIAM J. Math. Anal. 22, 1388 (1991).
  14. I. Daubechies and J. Lagarias, Two-scale difference equations, II. SIAM J. Math. Anal. 23, 1031 (1992).
  15. Ingrid Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Math., Philadelphia, 1992).
  16. Ingrid Daubechies, Orthonormal bases of compactly supported wavelets: II. Variations on a theme, SIAM J. Math. Anal. 24, 499 (1993).
  17. Carl de Boor and Amos Ron, Computational aspects of polynominal interpolation in several variables, Math Comput. 58, 198 (1997).
  18. Fredrik Ekstedt, Wavelet Diagonalization of Convolution Operators, Ph.D. thesis (Göteborg University, Göteborg, Sweden, 1997).
  19. S. Goedecker and O. Ivanov, Algorithms & applications: Solution of multiscale partial differential equations using wavelets, Comput. Phys. 12, No. 6, 548 (1998).
  20. D. P. Hardin and J. A. Marasovich, Biorthogonal multiwavelets on [-1, 1], ACJHA 7, No. 1, 34 (1999).
  21. Jelena Kovačević and Wim Sweldens, Wavelet families of increasing order in arbitrary dimensions, IEEE Trans. Image Process. 9, No. 3, 480 (2000).
  22. J. Kovačević and M. Vetterli, Nonseparable multidimensional perfect reconstruction filter banks and wavelet basis for r d , IEEE Trans. Inform. Theory 38, No. 2, 533 (1992).
  23. Stéphane Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998).
  24. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for abinitio total-energy calculation: Molecular-dynamics and conjugate gradients, Rev. Mod. Phys. 64, No. 4, 1045 (1992).
  25. W. E. Pickett, Pseudopotential methods in condensed matter applications, Comput. Phys. Rep. 9, No. 3, 115 (1989).
  26. Gerlind Plonka and Vasily Strela, From wavelets to multiwavelets, in Mathematical Methods for Curves and Surfaces II, edited by M. Dahlem, T. Lyche, and L. Shumaker (Vanderbilt University Press, 1998).
  27. D. A. Richie and K. Hess, Wavelet based electronic structure calculations, Micro. Eng. 47, Nos. 1-4, 333 (1999).
  28. S. D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71, No. 1, 18 (1992).
  29. J. B. Smith and J. G. Gay, Inherently self-consistent procedure for obtaining electronic structure: Results for a lithium particle, Phys. Rev. B 12, No. 10, 4238 (1975).
  30. David Stanhill and Yehoshua Y. Zeevi, Two-dimensional orthognal filter banks and wavelets with linear phase, IEEE Trans. Signal Process. 46, No. 1, 183 (1998).
  31. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980).
  32. Vasily Strela, Multiwavelets: Theory and Applications, Ph.D. thesis (Massachusetts Institute of Technology, 1996).
  33. Wim Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3, 186 (1996).
  34. Wim Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM J. Math. Anal. 29, No. 2, 511 (1997).
  35. C. J. Tymczak, Anders M. N. Niklasson, and Heinrich Röder, Diagonalization of the poisson operator using bi-orthogonal multi-wavelets, unpublished manuscript.
  36. C. J. Tymczak and X. Q. Wang, Orthonormal wavelet basis for quantum molecular-dynamics, Phy. Rev. Lett. 78, 3654 (1997).
  37. S. O. Wei and M. Y. Chou, Wavelets in self-consistent electronic structure calculations, Phys. Rev. Lett. 76, No. 15, 2650 (1996).
  38. D. Zorin, P. Schröder, and W. Sweldens, Interpolating subdivision for meshes with arbitrary topology, in Computer Graphics Proc. (SIGGRAPH'96), p. 189.