On the construction of multivariate (pre)wavelets
1993, Constructive Approximation
https://doi.org/10.1007/BF01198001Abstract
A new approach for the construction of wavelets and prewavelets on R d from multiresolution is presented. The method uses only properties of shiftinvariant spaces and orthogonal projectors from L2(R d) onto these spaces, and requires neither decay nor stability of the scaling function. Furthermore, this approach allows a simple derivation of previous, as well as new, constructions of wavelets, and leads to a complete resolution of questions concerning the nature of the intersection and the union of a scale of spaces to be used in a multiresolution.
References (29)
- JEW] [CW1] [CSW] [D] [D1] [DR] [JM] [JM1] [JW] [LM] [Ma] [Me] [Mi]
- G. BATTLE (1987): A block spin construction of ondelettes, Part I: Lemarie functions. Comm. Math. Phys., 110:601-615.
- A. BEN-ARTZI, A. RON (1990): On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal., 21:1550-1562.
- C. BENNETT, R. SHARPLEY (1988): Interpolation of Operators. Pure and Applied Mathe- matics, vol. 129. New York: Academic Press.
- C. DE BOOR, R. DEVORE (1983): Approximation by smooth multivariate splines. Trans. Amer. Math. Soc., 276:775-788.
- C. DE BOOR, R. DEVORE, A. RON (to appear): Approximation from shift-invariant subspaces of L2(Ra). Trans. Amer. Math. Soc.
- C. DE BOOR, R. DEVORE, A. RON (tO appear): The structure of finitely generated shift- invariant spaces in L2(Ra), J. Period Functional Anal.
- C. K. CHUt, J. Z. WANG (1992): A general framework for compactly supported splines and wavelets. J. Approx. Theory, 71:263-304.
- C. K. CHUI, J. Z. WANG (1992): On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc., 330:903-912.
- C. K. CHUI, J. STOCKLER, J. D. WARD (1992): Compactly supported box sptine wavelets. Approx. Theory & Appl., 8:77-100.
- I. DAUBECHIES (1988): Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., XLI:909-996.
- I. DAUBECHIES (1990): The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36:961-1005.
- N. DYN, A. RON (1990): Local approximation by certain spaces of multivariate exponential- polynomials, approximation order of exponential box splines and related interpolation problems. Trans. Amer. Math. Soc., 319:381-404.
- R. Q. JIA, C. A. MICCHELLI (1991): Using the refinement equation for the construction of pre-wavelets, H: powers of two. In: Curves and Surfaces (P. J. Laurent, A. Le M6haut6, L. L. Schumaker, eds.). New York: Academic Press, pp. 209-246.
- R.-Q. JIA, C. A. MICCHELLI (1991): Using the Refinement Equation for the Construction of Pre-Wavelets, V: Extensibility of Trigonometric Polynomials. RC 17196, IBM.
- R.-Q. J1A, J. Z. WANG (tO appear): Stability and linear independence associated with wavelet decompositions. Proc. Amer. Math. Soc.
- R. A. H. LORENTZ, W. R. MADYCH (1991): Wavelets and generalized box splines. Arbeits- papiere der GMD No. 563.
- S. G. MALLAT (1989): Multiresolution approximations and wavelet orthonormal bases of L2(R ). Trans. Amer. Math. Soc., 315:69-87.
- Y. MEYER (1980): Ondelettes et Op6rateurs I: Ondelettes. Paris: Hermann.
- C. A. MICCHELH (1991): Using the refinement equation for the construction of pre-wavelets. Numer. Algorithms, 1: 75-116.
- C. A. MICCHELLI (1991): Using the Refinement Equation for the Construction of Pre- Wavelets, IV: Cube Splines and Elliptic Splines United. Report RC 17195, IBM.
- MRU] [RS] [RS1] [R1] [R23 [Ru] [s~] C. A. MICCHELLI, C. RABUT, F. UTRERAS (preprint): Using the refinement equation for the construction of pre-wavelets, 111: elliptic splines.
- S. D. RIEMENSCHNEIDER, Z. SHEN (1991): Box splines, cardinal series, and wavelets. In: Approximation Theory and Functional Analysis (C. K. Chui, ed.). New York: Academic Press, pp. 133-149.
- S. D. RIEMENSCHNEIDER, Z. SHEN (1992): Wavelets and prewavelets in low dimensions. J. Approx. Theory, 71:18-38.
- A. Ror~ (1988): Exponential box splines. Constr. Approx., 4:357-378.
- A. RON (1990): Factorization theorems of univariate splines on regular grids. Israel J. Math., 70: 48-68.
- W. RUDIN (1974): Real and Complex Analysis. New York: McGraw-Hill.
- J. STOCKLER (1992): Multivariate wavelets. In: Wavelets--A Tutorial in Theory and Applications (C. K. Chui ed.). New York: Academic Press, pp. 325-355.
- C. de Boor R.A. DeVore A. Ron Center for Mathematical Department of Mathematics Computer Sciences Department Sciences University of South Carolina University of University of Columbia Wisconsin-Madison Wisconsin-Madison South Carolina 29208