Academia.eduAcademia.edu

Outline

Brain Activity Follow Up of Stock Market Financial Variables

Neuroeconomics ejounal

Abstract

Efficiency Market hypothesis assume that all investors reason in the same way to make their financial decisions. In contrast, Neurosciences have provided strong evidences that cognitive diversity is the hallmark of human intelligence. Neurofinances has shown that volunteers learned different profitable financial decision-making strategies depending on the kind of market they begun to trade. Here, we decide to further explore this hypothesis by studying a possible correlation between brain activity and the financial variables in a stock market game and to test if this correlation differ between experimental groups that trade in different market conditions. Present results show that volunteers had different perceptions of the studied financial variables depending if they initially traded in a bear or a bull market. Our findings are consistent with the hypothesis that different neural circuits were learned to monitor the different financial variables studied here, depending on market conditions.

References (44)

  1. Antonakis J. and J. Dietz (2011) Looking for validity or testing it? The perils of stepwise regression, extreme-scores analysis, heteroscedasticity, and measurement error. Personality and Individual Differences, 50(3):409-415.
  2. Ball, R. (2009) The global financial crisis and the efficient market hypothesis: What have we learned? Journal of Applied Corporate Finance 21,8-16.
  3. Benjamin Y., D. Drai, G. Elmer, N. Kafkafi and I. Golani (2001) Controlling the false discovery rate in behavior genetics research. Behavioral Brain Research, 125(1-2): 279- 284. Blakesley R.E., S. Mazumdar, M.A. Dew, P.R. Houck, G. Tang, C.F. Reynolds III and M.A. Butters (2009) Comparisons of Methods for Multiple Hypothesis Testing in Neuropsychological Research. Neuropsychology, 23(2):255-264.
  4. Bland, A. R. and Schaefer, A. (2011) Electrophysiological correlates of decision making under varying levels of uncertainty Brain Research 1417, 55-66.
  5. Cohen, M. X., Elger, C. E., and Ranganat, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage 35, 968-978.
  6. Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C., and Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research 1238 (31), 127-142.
  7. Davis, C. E., . Hauf, J. D, Wu, D. Q., and Everhart, D. E. (2011). Brain function with complex decision making using electroencephalography. International Journal of Psychophysiology 79, 175-183.
  8. Doeller, C. F., Opitz, B., Krick, C., Mecklinger, A., and Reith, W.(2006) Differential hippocampal and prefrontal-striatal contributions to instance-based and rule-based learning. NeuroImage 31, 1802 -1816.
  9. Esposito, F., Mulert, C., and Goebel, R. (2009). Combined distributed source and single-trial EEG-fMRI modeling: Application to effortful decision making processes. NeuroImage 47,112-121.
  10. Fama, E. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance 25 (2), 389-413.
  11. FitzGerald, T. H., Seymour, B. B., Bach, D. R., and Dolan, R. J. (2010) Differentiable Neural Substrates for Learned and Described Value and Risk. Current Biology 20,1823-1829.
  12. Foz, F. B., Lucchini; Palimieri, S., Rocha, A. F., Rodella, C.; Rondo, A. G., Cardoso, M. B., Ramazzini, and P. B., Leite, C. C. (2002). Language Plasticity Revealed by EEG Mapping. Pediatric Neurology 26,106-115.
  13. Gehring, W and. Willoughby, J. (2002) The Medial Frontal Cortex and the Rapid Processing of Monetary Gains and Losses. Science 295, 2279 -2282.
  14. Gonzalez, L., Powell, J., Shi J. and Wilson A. (2005).Two centuries of bull and bear market cycles. International Review of Economics & Finance 14(4), 469-486.
  15. Hair Jr., J. F ,. Anderson, R. E, Tatham, R. L, and Balck. W. C. (1998) Multivariate Data Analysis, Prentice Hall Inc.
  16. Huettel, S. A., Stowe, C. J., Gordon, E. M., Warner, B. T. and Platt, M. L. (2006). Neural signatures of economic preferences for risk and ambiguity. Neuron 49,766-775.
  17. Jeong, H. M., Sugiura, Y., Sassa, K.,Wakusawa, K. Horie, S. Sato and R. Kawashima (2010). Learning second language vocabulary: Neural dissociation of situation-based learning and text-based learning. NeuroImage 50,802-809.
  18. Kaustia, M. and S. Knüpfer (2012). Peer performance and stock market entry. Journal of Financial Economics 104,321-338.
  19. Karch, S., Feuerecker, R., Leicht, G., Meindl, T., Hantschk, I., Kirsch, V., Ertl, M., Lutz, J., Pogarell, O., and Mulert, C. (2010). Separating distinct aspects of the voluntary selection between response alternatives: N2-and P3-related BOLD responses. NeuroImage 51,356-364.
  20. Kuhnen, C. M., and Knuston, B. (2005). The neural basis of financial risk taking. Neuron 47,763-770.
  21. Lindsen, J., Jones, R., Shimojo, S. and Bhattacharya, J. (2010). Neural components underlying subjective preferential decision making. NeuroImage 50, 1626-1632.
  22. Maestu, F, Simos, P. G., Campo, P., Fernandez, A., Amo, C., Paul, N., Gonzalez- Marque, J., and Ortiza, T. (2003) Modulation of brain magnetic activity by different verbal learning strategies. NeuroImage 20, 1110-1121.
  23. Malkiel, B. (1989). Is the stock market efficient? Science 243,1313-1318.
  24. Malkiel, B. (2003). The Efficient Market Hypothesis and Its Critics. Journal of Economic Perspectives 17 (1),59-82.
  25. Marroquin J.L., R.J. Biscay, S. Ruiz-Correa, A. Alba, R. Ramirez and J.L. Armony (2011) Morphology-based hypothesis testing in discrete random fields: A non- parametric method to address the multiple-comparison problem in neuroimaging. NeuroImage, In Press, Corrected Proof, Available online 8 April 2011.
  26. McClure, S., Laibson, D. I., Lowenstein, G. and Dochen, J. D. (2004) Separate Neural Systems Value Immediate and Delayed Monetary Rewards. Science 306, 503-507.
  27. Mueller S.G., L.L. Chao, B. Berman and M.W. Weiner (2011) Evidence for functional specialization of hippocampal subfields detected by MR subfield volumetry on high resolution images at 4 T. NeuroImage, 56(3):851-857.
  28. Nandy R. and D. Cordes (2007) A semi-parametric approach to estimate the family- wise error rate in fMRI using resting-state data. NeuroImage, 34(4):1562-1576.
  29. Polezzi, D., Sartori, G., Rumiati R., Vidotto, G., and Daum I. (2010) Brain correlates of risky decision-making NeuroImage 49, 1886-1894.
  30. Rocha. F. T., Rocha, A.F., Massad, E., Menezes, R.X. (2005). Brain mappings of the arithmetic processing in children and adults. Cognitive Brain Res. 22, 359-372.
  31. Rocha, A. F., Rocha, F. T., Massad, E. and Burattini, M. N. (2010) Neurodynamics of an election. Brain Research 198-211.
  32. Rocha, A. F., Rocha, F.T. and Massad, M. (2011) The brain as a distributed intelligent processing system. Plos One. 6(3): e17355. doi:10.1371/journal.pone.0017355.
  33. Rocha, A. F., and Rocha., F. T. (2011) Neuroeconomia e o Processo Decisório, LTC., São Paulo.
  34. Rocha, A. F. and F. T. Rocha (2013) Neuromarketing Study of Consumer Satisfaction. Behavioral Marketing eJournal http://papers.ssrn.com/abstract=2321787
  35. Rooij, M. , Lusardi, A. and Alessie, R. (2011). Financial literacy and stock market participation. Journal of Financial Economics 101, 449-472.
  36. Sanfey, A G., Rilling., J. K., Aronson, J. A., Nystrom, L. E. and Cohen, J. D. (2003). The neural basis of economic decision-making in the ultimatum game. Science 200,1755-175.
  37. Seymour, B., and McClure, S. (2008). Anchors, scales and the relative coding of value in the brain, Current. Opinion in Neurobiology, 18:173-178.
  38. Song,Q. S., G.Yin, and Q. Zhang (2009): Stochastic Optimization Methods for Buying- Low-and-Selling-High Strategies, Stochastic Analysis and Applications 27, 523-542
  39. Statman. M. (2011). Efficient markets in crisis. Journal of Investment Management 9, 4-13.
  40. Tobler, P. N, Fletcher, C. Bullmore, E. T. and Schultz, W. (2007). Learning-related human brain activations reflecting individual finances. Neuron 54,167-175.
  41. Tzovara, A., Murray, M. M., Bourdaud, N., Chavarriaga, R.., Millán J. R, and De Luci, M. (2012). The timing of exploratory decision-making revealed by single-trial topographic EEG analyses. NeuroImage 60, 1959-1969.
  42. Vecchiato G., F. De Vico Fallani, L. Astolfi, J. Toppi, F. Cincotti, D. Mattia, S. Salinari and F. Babiloni (2010) The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: An application in a neuromarketing experiment. Journal of Neuroscience Methods, 191(2):283-289.
  43. Vieito, J., A. F. Rocha and F. T. Rocha (2013) Brain Activity of the Investor´s Stock Market Financial Decision. Submitted.
  44. Zhang,H., and Q. Zhang (2008). Trading a mean-reverting asset: Buy low and sell high, Automatica. A Journal of IFAC 44, 1511-1518.