The Set of Packing and Covering Densities of Convex Disks
2013, Discrete & Computational Geometry
https://doi.org/10.1007/S00454-013-9542-9Abstract
For every convex disk K (a convex compact subset of the plane, with non-void interior), the packing density δ(K) and covering density ϑ(K) form an ordered pair of real numbers, i.e., a point in R 2. The set Ω consisting of points assigned this way to all convex disks is the subject of this article. A few known inequalities on δ(K) and ϑ(K) jointly outline a relatively small convex polygon P that contains Ω, while the exact shape of Ω remains a mystery. Here we describe explicitly a leaf-shaped convex region Λ contained in Ω and occupying a good portion of P. The sets ΩT and ΩL of translational packing and covering densities and lattice packing and covering densities are defined similarly, restricting the allowed arrangements of K to translated copies or lattice arrangements, respectively. Due to affine invariance of the translative and lattice density functions, the sets ΩT and ΩL are compact. Furthermore, the sets Ω, ΩT and ΩL contain the subsets Ω , Ω T and Ω L respectively, corresponding to the centrally symmetric convex disks K,
References (20)
- G.D. Chakerian and L.H. Lange, Geometric extremum problems. Math. Mag., 44 (1971), 57-69.
- C.H. Dowker, On minimum circumscribed polygons, Bull. A.M.S. 50 (1944), 120-122.
- G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, Chapter 3.3 in: Hand- book of Convex Geometry (P.M. Gruber and J.M. Wills, Eds.), Elsevier 1993, 799-860.
- L. Fejes Tóth, Some packing and covering theorems, Acta Sci Math. Szeged, 12/A (1950), 62-67.
- L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel and im Raum, Springer Verlag, Berlin 1953. Second ed. 1972.
- C.F. Gauss, Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber, Göttingische gelehrte Anzeigen, July 9, 1831. Reprinted in: Werke, Vol. 2, Königliche Gesellschaft der Wissenschaften, Göttingen, 1863, 188-196; J. Reine Angew. Math. 20 (1840) 312320.
- T.C. Hales, A proof of the Kepler conjecture, Annals of Math., Second Series 162 (3) (2005), 10651185.
- D. Ismailescu, Covering the plane with copies of a convex disk, Discrete Comput. Geom., 20 (1998), no. 2, 251-263.
- D. Ismailescu, Efficient packing and and other extremal problems in geometry. Thesis (Ph.D.)-New York University, 2001, 97 pp.
- D. Ismailescu, Inequalities between lattice packing and covering densities of centrally symmetric plane convex bodies. Discrete Comput. Geom., 25 (2001), no. 3, 365-388.
- D. Ismailescu and B. Kim, Packing and covering with centrally symmetric convex disks. Preprint, 2013.
- R. Kershner, The number of circles covering a set. Amer. J. Math., 61 (1939). 665-671.
- G. Kuperberg, and W. Kuperberg, Double-lattice packings of convex bodies in the plane, Discrete & Computational Geometry 5 (1990), 389-397
- W. Kuperberg, An inequality linking packing and covering densities of plane convex bodies, Geom. Dedicata 23 (1987), no. 1, 59-66.
- W. Kuperberg, Covering the plane with congruent copies of a convex body, Bull. London Math. Soc. 21 (1989), no. 1, 82-86.
- J.L. Lagrange, Recherches d'Arithmétique. Nouv. Mem. de l'Acad. Roy. Sci. et Belles-Lettres Berlin 1773, 265-312 [Oeuvres, Vol. III, (Gauthier-Villars, Paris 1869) pp. 693795].
- A.M. Macbeath, A compactness theorem for afne equivalence-classes of convex regions. Canadian J. Math. 3, (1951), 54-61.
- E. Sas, Über eine Extremumeigenschaft der Ellipsen, Compositio Math. 6 (1939), 468-470.
- A. Thue, Über die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene, Christiania Vid. Selsk. Skr. 1 (1910), 3-9.
- W. Kuperberg, Mathematics & Statistics, Auburn University, Auburn, AL 36849-5310, USA E-mail address: kuperwl@auburn.edu