MedMeSH summarizer: text mining for gene clusters
… of the Second SIAM International Conference on Data Mining
https://doi.org/10.1137/1.9781611972726.32Abstract
AI
AI
The MedMeSH Summarizer is a text mining system developed to assist biologists in interpreting gene clusters obtained from microarray experiments. By leveraging the vast amount of data generated through genomic studies, the system facilitates the cross-referencing of experimental results with existing biological literature and databases. This capability helps elucidate the biological significance of clustered genes, ultimately improving our understanding of complex biological processes and the development of targeted therapeutics.
References (32)
- M. Schena, D. Shalon, R. Davis and P. O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 270 (1995), pp. 467-470.
- D. Shalon, S. J. Smith and P. O. Brown, A DNA microarray system for analyzing com- plex DNA samples using two-color fluorescent probe hybridization, Genome Research, 6 (1996), pp. 639-645.
- D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer and J. M. Trent, Expression profiling using cDNA microarray, Nature Genetics, 21 (1999), pp. 10-14.
- P. O. Brown and D. Botstein, Exploring the new world of the genome with DNA microar- rays, Nature Genetics, 21 (1999), pp. 33-37.
- R. J. Lipshutz, S. P. Fodor, T. R. Gingeras and D. J. Lockhart, High density synthetic oligonucleotide arrays, Nature Genetics, 21 (1999), pp. 20-24.
- D. J. Lockhart, H. Dong, M. C. Byrne and M. T. Follettie et al., Expression monitoring by hybridization to high-density oligonucleotide arrays, Nature Biotechnology, 14 (1996), pp. 1675-1680.
- P. T. Spellman, G. Sherlock and M. Q. Zhang and V. R. Iyer et al., Comprehensive Identification of Cell Cycleregulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, 9 (1998), pp. 3273-3297.
- T. R. Golub, D. K. Slonim, P. Tamayo and C. Huard et al., Molecular classifcation of cancer: class discovery and class prediction by gene expression monitoring, Science, 286 (1999), pp. 531-537.
- M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc Natl Acad Sci USA, 95 (1998), pp. 14863- 14868.
- T Kohonen, Self-Organizing Maps, Springer, New York, NY, 1997.
- P. Tamayo, D. Slonim, J. Mesirov and Q. Zhu, et al., Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation, Proc Natl Acad Sci USA, 96 (1999), pp. 2907-2912.
- A. Brazma, I. Jonassen, J. Vilo and E. Ukkonen, Predicting gene regulatory elements in silico on a genomic scale, Genome Research, 8 (1998), pp. 1202-1215.
- L. Juhl-Jensen L and S. Knudsen, Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation, Bioinformatics, 16 (2000), pp. 326-333.
- A. Zien, Analysis of gene expression data with pathway scores, Proceedings of the Intelligent Systems for Molecular Biology, 2000.
- M. P. Kurhekar, S. Adak, S. Jhunjhunwala and K. Raghupathy, Genome-wide pathway analysis and visualization using gene expression data, Proceedings of the Pacific Sym- posium of Biocomputing, 2002. To appear.
- C. D. Paice, Constructing Literature abstracts by computer: Techniques and Prospects, Infor- mation Processing and Management, 26:1 (1990), pp. 171-186.
- C. D. Paice and P. Jones, The identification of important concepts in highly structured technical papers, Proceedings of the ACM-SIGIR, Pittsburgh, PA, 1993.
- K. Sparck-Jones, Summarization: Where are we now? Where should we go?, Proceedings of the ACL/EACL '97 Workshop on Intelligent, Scalable text summarization, Madrid, Spain, 1997.
- I. Ilipoulos, A. J. Enright and C. A. Ouzonis, TEXTQUEST: Document Clustering of Medline Abstracts for concept discovery in molecular biology, Proceedings of the Pacific Symposium of Biocomputing 2001, pp. 384-395.
- L. Tanabe, U. Scherf, L. H. Smith and J. K. h Lee et al., MedMiner: An Internet Text-Mining Tool for Biomedical Information, with Application to Gene Expression Profiling, Biotechniques, 27 (1999), pp. 1210-1217.
- H. Shatkay, S. Edwards, J. Wilbur and M. Boguski, Genes, Themes and Microar- rays: Using Information Retrieval for Large-Scale Gene Analysis, Proceedings of the Intelligent Systems for Molecular Biology, 2000.
- T. Hofmann and J. Puzicha, Statistical models for co-occurence data, Technical Report, M.I.T. Artificial Intelligence Laboratory (1998), A.I. Memo No. 1625.
- T. Fukuhura, H. Takeda and T. Nishida, Multiple text-summarization for collective knowledge formation, Workshop on Social Aspects of Knowledge and Memory(IEEE Systems, Man and Cybernetics Conference), 1999.
- C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation methods for the Web, The tenth international World Wide Web conference on World Wide Web, 2001, pp. 613-622.
- M. Truchon, Figure Skating and the Theory of Social Choice, Technical Report, Universite Laval, Departement d'economique, 1998.
- A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its applications, Academic Press, New York, NY, 1979.
- L. Gravano and H. Garcia-Molina, Merging Ranks from heterogeneous internet sources, Proceedings of VLDB, 1997.
- L. A. Adamic, Zipf, Power-laws, and Pareto -a ranking tutorial, http://www.parc.xerox.com/istl/groups/iea/papers/ranking/, October 2000.
- J. L. DeRisi, V. R. Iyer and P. O. Brown, Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale, Science 278 (1997), pp. 680-686.
- A. Sen, On Economic Inequality, Oxford University Press, UK, 1973.
- W. H. Kunau and R. Erdmann, Peroxisome biogenesis: Back to the endoplasmic reticu- lum?, Current Biology, 8 (1998), pp. R299-R302.
- M. W. Berry, S. T. Dumais and G. W. O'Brien, Using Linear Algebra for Intelligent Information Retrieval, SIAM Review, 37:4 (1995), pp. 573-595.