Academia.eduAcademia.edu

Outline

A connectionist model of development

1991, Journal of theoretical Biology

https://doi.org/10.1016/S0022-5193(05)80391-1

Abstract
sparkles

AI

This paper introduces a modeling framework to understand key processes in biological development, particularly gene regulation in Drosophila's blastoderm. The framework simplifies complex developmental processes into a connectionist model that captures changes in cell states and interactions based on genetic and spatial information. Initial simulations demonstrate the model's compatibility with known biochemical mechanisms, while future applications could extend to cell cycle control and other developmental phenomena.

References (26)

  1. AKAM, M. (1987). The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 1-22.
  2. BAUM, E. & HAUSSLER, D. (1989). What size net gives valid generalization? In: Neural Information Processing Systems Vol. 1, p. 81. Palo Alto, CA: Morgan Kaufmann.
  3. BELL, G. I. (1988). Models of cell adhesion involving specific binding. In: Physical Basis of Cell-Cell Adhesion (Bongrand, P., ed.) chapter 10. Boca Raton, FL: CRC Press.
  4. CARROLL, S. B., LAUGHON, A. & THALLEY, B. (1988). Expression, function, and regulation of the hairy segmentation protein in the Drosophila embryo. Genes and Development 2, 883-890.
  5. CARROLL, S. B. & ScoTr, M. P. (1986). Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell 45, 113-126.
  6. EDGAR, B. A., ODELL, G. M. & SCHUBIGER, G. (1989). A genetic switch, based on negative regulation, sharpens stripes in Drosophila embryos. Dev. Gen. 10, 124-142.
  7. FOE, V. A. & ALaERTS, B. M. (1983). Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61, 31-70.
  8. FRASCH, M. & LEVI N E, M. (1987). Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev. 1, 981-995.
  9. GOODWIN, B. & KAUFFMAN, S. (1990). Spatial harmonics and pattern specification in early Drosophila development. Bifurcation sequences and gene expression. J. theor Biol. 144, 303-319.
  10. HILL, T. L. (1985). Cooperativity Theory in Biochemistry: Steady-State and Equilibrium Systems. Berlin: Springer-Verlag.
  11. HOPFIELD, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81, 3088-3092.
  12. INGHAM, P. W. (1988), The molecular genetics of embryonic pattern formation in Drosophila. Nature, Lond. 335, 25-34.
  13. JACKLE, H., TAUTZ, O., SCHIAH, R., SEI FERT, E. & LEHMANN, R. (1986). Cross-regulatory interactions among the gap genes of Drosophila. Nature, Lond. 324, 668-670.
  14. LACALLI, T. C., WILKINSON, D. A. & HARRISON, L. G. (1988). Theoretical aspects of stripe formation in relation to Drosophila segmentation. Development 104, 105-113.
  15. LINDENMAYER, A. (1968). Mathematical models for cellular interaction in development, parts I and II. J. theor. Biol. 18, 280-315.
  16. MEINHARDT, H. (1986). Hierarchical inductions of cell states: a model for segmentation in Drosophila. J. Cell Sci. (Suppl.) 4, 357-381.
  17. MJOLSNESS, E., SHARP, D. H. & ALPERT, B. K. (1989). Scaling, machine learning, and genetic neural nets. Advan. appl. Math. 10, 137-163.
  18. MULLER, H. J. (1932). Further studies on the nature and causes ofgene mutations. In: Sixth International Congress of Genetics Vol. 1, p. 213-255.
  19. O'FARRELL, P. H., EDGAR, B. A., LAKICH, D. & LEHNER, C. F. (1989). Directing cell division during development. Science 246, 635-640.
  20. PANKRATZ, M. J., HOCH, M., SEIFERT, E. & JACKLE, H. (1989). Kruppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature, Lond. 341, 337-340.
  21. PEARMUTFER, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural Computation, 1(2), 263-269.
  22. REIN1TZ, J. & LEVtNE, M. (1990). Control of the initiation of homeotic gene expression by the gap genes giant and tailless in Drosophila. Dev. Biol. 140, 57-72.
  23. RE1NITZ, J., MJOLSNESS, E. & SHARP, D. H. (1991). A connectionist model of the Drosophila blastoderm. In: The Organization of Organisms: Proceedings of a Workshop at the Santa Fe Institute (Buskin, A. & Mittenthal, J., eds) Redwood City, CA: Addison-Wesley.
  24. RUMMELHART, D. E., HINTON, G. E. & WILLIAMS, R. J. (1986). Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press.
  25. RUSH LOW, C., HARDING, K. & LEVI NE, M. (1987). Hierarchical interactions among pattern-forming genes in Drosophila. In: Banba O, Report 26: Development Toxicity: Mechanisms and Risk. Cold Spring Harbor: Cold Spring Harbor Press.
  26. SMITH, J. C. (1987). A mesoderm-inducing factor is produced by a Xenopus cell line. Development 99, 3-14.