Academia.eduAcademia.edu

Outline

Minimal model for stem-cell differentiation

2013, Physical Review E

https://doi.org/10.1103/PHYSREVE.88.032718

Abstract

To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed.

References (38)

  1. Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomas ED, Thomson J, West M (2009) Essentials of Stem Cell Biology. 2nd edition, Academic Press, San Diego, USA
  2. Potten CS, Loeffer M (1990) Development 110: 1001-1020
  3. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) Science 298: 597- 600
  4. Slack JM (2002) Nat. Rev. Genet. 3: 889-895
  5. C. H. Waddington (1957) The Strategy of the Genes. George Allen & Unwin, London
  6. Forgacs G, Newman SA (2006) Biological Physics of The Developing Embryo. Cambridge Univ. Press, Cambridge, UK
  7. Goodwin BC (1963) Temporal Organizations in Cells. Academic Press, San Diego, USA
  8. Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford, UK
  9. Kauffman SA (1969) J. Theor. Biol. 22: 437-467
  10. Glass L, Kauffman SA (1973) J. Theor Biol. 39: 103-129
  11. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Nature 453: 544-548
  12. Kaneko K, Yomo T (1994) Physica D 75: 89-102
  13. Kaneko K, Yomo T (1997) Bull. Math. Biol. 59: 139-196
  14. Kaneko K, Yomo T (1999) J. Theor. Biol. 199: 243-256
  15. Furusawa C, Kaneko K (1998) Bull. Math. Biol. 60: 659-687
  16. Furusawa C, Kaneko K (2001) J. Theor. Biol. 209: 395-416
  17. N. Suzuki, C. Furusawa, K. Kaneko (2011), PLoS One 6, e27232.
  18. Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) Genes Dev. 23(16): 1870-1875
  19. Furusawa C, Kaneko K (2012) Science 338: 215-217
  20. Mjolsness E, Sharp DH, Reinitz J (1991) J. Theor. Biol. 152: 429-453
  21. Turing A M (1952) Phil. Trans. Roy. Soc. B 237: 37-72
  22. Mizuguchi T, Sano M (1995) Phys. Rev. Lett. 75: 966-969
  23. Prigogine I, Lefever R (1968) J. Chem. Phys. 48: 1695-1700
  24. Bar-Eli K (1985) Physica D 14: 242-252;
  25. Aronson D, Ermentrout GB, Kopell N (1990) Physica D 41: 403-449
  26. Koseska A, Volkov E, Kurths J (2010) Chaos 20: 023132
  27. Izhikevich EM (2006) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA
  28. Ermentrout GB, Kopell N (1986) SIAM J. Appl. Math. 46: 233-253
  29. Kaneko K (1990) Physica D 41: 137-172
  30. Okuda K (1993) Physica D 63: 424-436
  31. Pattern formation based on this type of oscillation dynamics is discussed in Cooke J, Zeeman EC (1976) J. Theor. Biol. 58: 455-476;
  32. Gierer A, Meinhardt H (1972) Kybernetik 12: 30-39
  33. Nakajima A, Kaneko K (2008) J. Theor. Biol. 253: 779-787
  34. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Science 298: 824-827
  35. Ullner E, Zaikin A, Volkov EI, García-Ojalvo J (2007) Phys. Rev. Lett. 99: 148103
  36. Koseska A, Ullner E, Volkov EI, Kurths J, García-Ojalvo J, (2010), J. Theor. Biol. 263: 189- 202
  37. Morrison SJ, Shah NM, Anderson DJ (1997) Cell 88: 287-298;
  38. Loh YH, et al. (2006) Nat. Genet. 38: 431-440