Academia.eduAcademia.edu

Outline

Weighted Recognizability over Infinite Alphabets

Acta Cybernetica

https://doi.org/10.14232/ACTACYB.23.1.2017.16

Abstract

We introduce weighted variable automata over infinite alphabets and commutative semirings. We prove that the class of their behaviors is closed under sum, and under scalar, Hadamard, Cauchy, and shuffle products, as well as star operation. Furthermore, we consider rational series over infinite alphabets and we state a Kleene-Schützenberger theorem. We introduce a weighted monadic second order logic and a weighted linear dynamic logic over infinite alphabets and investigate their relation to weighted variable automata. An application of our theory, to series over the Boolean semiring, concludes to new results for the class of languages accepted by variable automata.

References (43)

  1. P. Barceló, J. Reutter, L. Libkin, Parameterized regular expressions and their languages, Theoret. Comput. Sci. 474(2013) 21-45.
  2. W. Belkhir, Y. Chevalier, M. Rusinowitch, Fresh-variable automata: Applica- tion to service composition, in: Proceedings of SYNASC 2013, pp.153-160.
  3. W. Belkhir, Y. Chevalier, M. Rusinowitch, Guarded variable automata over infinite alphabets, CoRR abs/1304.6297, 2013.
  4. M. Benedikt, C. Ley, G. Puppis, Automata vs. logics on data words, in: Pro- ceedings of CSL 2010, LNCS 6247(2010) 110-124.
  5. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin, Two- variable logic on data words, ACM Trans. Comput. Log. 12(4)(2011) 27.
  6. B. Bollig, P. Habermehl, M. Leucker, B. Monmege, A robust class of data languages and an application to learning, Log. Methods in Comput. Sci. 10(4)(2014) 19.
  7. J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlager Math. 6(1960) 66-92.
  8. P. Černý, S. Gopi, T.A. Henzinger, A. Radhakrishna, N. Totla, Synthesis from incompatible specifications, in: Proceedings of EMSOFT 2012, ACM (2012) 53-62.
  9. J. Dassow, G. Vaszil, P finite automata and regular languages over countably infinite alphabets, in: Proceedings of WMC 7, LNCS 4361(2006) 367-381.
  10. P. Degano, G.L. Ferrari, G. Mezzetti, Nominal automata for resource usage control, in: Proceedings of CIAA 2012, LNCS 7381(2012) 125-137.
  11. A. Deharbe, F. Peschanski, The omniscient garbage collector: A resource anal- ysis framework, in: Proceedings of ACSD 2014, IEEE Computer Society 102- 111.
  12. M. Droste, P. Gastin, Weighted automata and weighted logics, Theoret. Com- put. Sci. 380 (2007) 69-86.
  13. M. Droste, P. Gastin, Weighted automata and weighted logics, chapter 5, in [14].
  14. M. Droste, W. Kuich, H. Vogler (eds), Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science, Springer, Berlin, 2009.
  15. M. Droste, I. Meinecke, Weighted automata and regular expressions over val- uation monoids, Internat. J. Found. Comput. Sci. 22(2011) 1829-1844.
  16. M. Droste, G. Rahonis, Weighted linear dynamic logic, in: Proceedings of GandALF 2016, EPTCS 226(2016) 149-163.
  17. C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98(1961) 21-52.
  18. Z. Ésik, W. Kuich, Finite automata, chapter 3, in [14].
  19. P. Gastin, B. Monmege, A unifying survey on weighted logics and weighted automata, Soft Computing, to appear.
  20. G. De Giacomo, M. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: Proceedings of IJCAI, IJCAI/AAAI. Available at http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
  21. O. Grumberg, O. Kupferman, S. Sheinvald, Variable automata over infinite alphabets, in: Proceedings of LATA 2010, LNCS 6031(2010) 561-572.
  22. O. Grumberg, O. Kupferman, S. Sheinvald, Variable automata over infinite alphabets, http://www.cs.huji.ac.il/˜ornak/publications/lata10.pdf
  23. O. Grumberg, O. Kupferman, S. Sheinvald, Model checking systems and spec- ifications with parameterized atomic propositions, in: Proceedings of ATVA 2012, LNCS 7561(2012) 122-136.
  24. M. Kaminski, N. Francez, Finite-memory automata, Theoret. Comput. Sci. 134(1994) 329-363.
  25. M. Kaminski, T. Tan, Regular expressions for languages over infinite alpha- bets, Fund. Inform. 69(2006) 301-318.
  26. I.-E. Mens, Tree Automata over Infinite Ranked Alphabets, Master thesis, Thessaloniki 2011, http://invenio.lib.auth.gr/record/128884/files/GRI-2012- 8361.pdf
  27. I.-E. Mens, G. Rahonis, Variable tree automata over infinite ranked alphabets, in: Proceedings of CAI 2011, LNCS 6742(2011) 247-260.
  28. F. Neven, T. Schwentick, V. Vianu, Towards regular languages over infinite alphabets, in: Proceedings of MFCS 2001, LNCS 2136(2001), 560-572.
  29. F. Neven, T. Schwentick, V. Vianu, Finite state machines for strings over infinite alphabets, ACM Trans. Comput. Log. 5(2004) 403-435.
  30. G. Pellegrino, Q. Lin, C. Hammerschmidt, S. Verwer, Learning deterministic finite automata from infinite alphabets, in: Proceedings of ICGI 2016, JMLR: Workshop and Conference Proceedings 57(2016) 120-131.
  31. M. Pittou, Weighted Variable Automata over Infinite Alphabets, Master The- sis, Thessaloniki 2014, http://ikee.lib.auth.gr/record/135664/files/GRI-2015- 13622.pdf
  32. M. Pittou, G. Rahonis, Weighted variable automata over infinite alphabets, in: Proceedings of CIAA 2014, LNCS 8587(2014) 304-317.
  33. M. Praveen, B. Srivathsan, Nesting depth of operators in graph database queries: Expressiveness vs evaluation complexity, in: Proceedings of ICALP 2016, LIPIcs 55(2016), 117:1-117:14.
  34. J. Sakarovitch, Elements of Automata Theory, Cambridge University Press, 2009.
  35. M. Schützenberger, On the definition of a family of automata, Information and Control 4(1961) 245-270.
  36. L. Segoufin, Automata and logics for words and trees over an infinite alphabet, in: Proceedings of CSL 2006, LNCS 4207(2006) 41-57.
  37. Y. Shemesh, N. Francez, Finite-state unification automata and relational lan- guages, Inform. and Comput. 114(1994) 192-213.
  38. F. Song, Z. Wu, On temporal logics with data variable quantifications: Decid- ability and complexity, Inform. and Comput. 251(2016) 104-139.
  39. T. Tan, Graph reachability and pebble automata over infinite alphabets, ACM Trans. Comput. Log. 14(3)(2013) 19:1-19:31.
  40. W. Thomas, Languages, automata and logic, in: Handbook of Formal Lan- guages vol. 3 (G. Rozenberg, A. Salomaa, eds.), Springer, 1997, pp. 389-485.
  41. B. Trakhtenbrot, Finite automata and logic of monadic predicates (in Russian), Doklady Akademii Nauk SSSR 140(1961) 326-329.
  42. M.Y. Vardi, The rise and fall of LTL, in: Proceedings of GandALF 2011, EPTCS 54(2011).
  43. D. Vrgoč, Using variable automata for querying data graphs, Inf. Process. Lett. 115(3)(2015) 425-430.