Academia.eduAcademia.edu

Outline

Quasiperiodicity and Non-computability in Tilings

2015, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-662-48057-1_17

Abstract

We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove the existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction [12]; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any Π 0 1-class can be recursively transformed into a tile set so that the Turing degrees of the resulting tilings consists exactly of the upper cone based on the Turing degrees of the latter.

References (19)

  1. R. Berger, The Undecidability of the Domino Problem. Mem. Amer. Math. Soc., 66 (1966).
  2. R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane. Inventiones Math- ematicae, 12, 177-209 (1971).
  3. B. Grünbaum and G.C. Shephard, Tilings and patterns. A Series of Books in the Mathemat- ical Sciences, W. H. Freeman and Company, New York (1989).
  4. E. Börger, E. Grädel, and Yu. Gurevich. The classical decision problem. Springer Science & Business Media (2001).
  5. P. van Emde Boas. Dominoes are forever. Universiteit van Amsterdam, Mathematisch Insti- tuut, (1983).
  6. L. S. Levitov. Local rules for quasicrystals. Communications in mathematical physics 119(4), 627-666 (1988).
  7. W. Hanf. Nonrecursive tilings of the plane. I . The Journal of Symbolic Logic, 39, 283-285 (1974).
  8. D. Myers. Nonrecursive tilings of the plane. II . The Journal of Symbolic Logic, 39, 286-294 (1974).
  9. K. Culik II and J. Kari. An aperiodic set of Wang cubes. J. UCS The Journal of Universal Computer Science. Springer Berlin Heidelberg, 675-686 (1996).
  10. N. Ollinger, Two-by-two substitution systems and the undecidability of the domino problem. Logic and Theory of Algorithms, 476-485 (2008).
  11. B. Durand, L. A. Levin, and A. Shen. Complex tilings. The Journal of Symbolic Logic, 73, 593-613 (2008).
  12. B. Durand, A. Romashchenko, and A. Shen, Fixed-point tile sets and their applications. Journal of Computer and System Sciences, 78(3), 731-764 (2012).
  13. B. Durand, Tilings and quasiperiodicity. Theoretical Computer Science 221(1), 61-75 1999.
  14. Alexis Ballier, Propriétés structurelles, combinatoires et logiques des pavages. PhD thesis, Marseille, November 2009.
  15. A. Ballier and E. Jeandel. Computing (or not) Quasi-periodicity Functions of Tilings. In Proc. 2nd Symposium on Cellular Automata (JAC 2010), 54-64.
  16. E. Jeandel and P. Vanier. Π 0 1 Sets and Tilings. Theory and Applications of Models of Com- putation. Springer Berlin Heidelberg, 230-239, (2011).
  17. E. Jeandel and P. Vanier. Turing degrees of multidimensional SFTs. Theoretical Computer Science. 505, 81-92, (2013).
  18. M. Hochman and P. Vanier. A note on Turing degree spectra of minimal. arXiv:1408.6487 (2014).
  19. M. Hochman. Upcrossing inequalities for stationary sequences and applications to entropy and complexity. Ann. Probab. 37(6), 2135-2149 (2009).