Quasiperiodicity and Non-computability in Tilings
2015, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-662-48057-1_17Abstract
We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove the existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction [12]; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any Π 0 1-class can be recursively transformed into a tile set so that the Turing degrees of the resulting tilings consists exactly of the upper cone based on the Turing degrees of the latter.
References (19)
- R. Berger, The Undecidability of the Domino Problem. Mem. Amer. Math. Soc., 66 (1966).
- R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane. Inventiones Math- ematicae, 12, 177-209 (1971).
- B. Grünbaum and G.C. Shephard, Tilings and patterns. A Series of Books in the Mathemat- ical Sciences, W. H. Freeman and Company, New York (1989).
- E. Börger, E. Grädel, and Yu. Gurevich. The classical decision problem. Springer Science & Business Media (2001).
- P. van Emde Boas. Dominoes are forever. Universiteit van Amsterdam, Mathematisch Insti- tuut, (1983).
- L. S. Levitov. Local rules for quasicrystals. Communications in mathematical physics 119(4), 627-666 (1988).
- W. Hanf. Nonrecursive tilings of the plane. I . The Journal of Symbolic Logic, 39, 283-285 (1974).
- D. Myers. Nonrecursive tilings of the plane. II . The Journal of Symbolic Logic, 39, 286-294 (1974).
- K. Culik II and J. Kari. An aperiodic set of Wang cubes. J. UCS The Journal of Universal Computer Science. Springer Berlin Heidelberg, 675-686 (1996).
- N. Ollinger, Two-by-two substitution systems and the undecidability of the domino problem. Logic and Theory of Algorithms, 476-485 (2008).
- B. Durand, L. A. Levin, and A. Shen. Complex tilings. The Journal of Symbolic Logic, 73, 593-613 (2008).
- B. Durand, A. Romashchenko, and A. Shen, Fixed-point tile sets and their applications. Journal of Computer and System Sciences, 78(3), 731-764 (2012).
- B. Durand, Tilings and quasiperiodicity. Theoretical Computer Science 221(1), 61-75 1999.
- Alexis Ballier, Propriétés structurelles, combinatoires et logiques des pavages. PhD thesis, Marseille, November 2009.
- A. Ballier and E. Jeandel. Computing (or not) Quasi-periodicity Functions of Tilings. In Proc. 2nd Symposium on Cellular Automata (JAC 2010), 54-64.
- E. Jeandel and P. Vanier. Π 0 1 Sets and Tilings. Theory and Applications of Models of Com- putation. Springer Berlin Heidelberg, 230-239, (2011).
- E. Jeandel and P. Vanier. Turing degrees of multidimensional SFTs. Theoretical Computer Science. 505, 81-92, (2013).
- M. Hochman and P. Vanier. A note on Turing degree spectra of minimal. arXiv:1408.6487 (2014).
- M. Hochman. Upcrossing inequalities for stationary sequences and applications to entropy and complexity. Ann. Probab. 37(6), 2135-2149 (2009).