Academia.eduAcademia.edu

Outline

Flexibly instructable agents

1995

Abstract

This paper presents an approach to learning from situated, interactive tutorial instruction within an ongoing agent. Tutorial instruction is a exible (and thus powerful) paradigm for teaching tasks because it allows an instructor to communicate whatever types of knowledge an agent might need in whatever situations might arise. To support this exibility, however, the agent must be able to learn multiple kinds of knowledge from a broad range of instructional interactions. Our approach, called situated explanation, achieves such learning through a combination of analytic and inductive techniques. It combines a form of explanation-based learning that is situated for each instruction with a full suite of contextually guided responses to incomplete explanations. The approach is implemented in an agent called Instructo-Soar that learns hierarchies of new tasks and other domain knowledge from interactive natural language instructions. Instructo-Soar meets three key requirements of exible instructability that distinguish it from previous systems: (1) it can take known or unknown commands at any instruction point; (2) it can handle instructions that apply to either its current situation or to a hypothetical situation speci ed in language (as in, for instance, conditional instructions); and (3) it can learn, from instructions, each class of knowledge it uses to perform tasks.

References (108)

  1. Akatsuka, N. (1986). Conditionals are discourse-bound. In Traugott, E. C. (Ed.), On Conditionals, pp. 333{51. Cambridge Univ. Press, Cambridge.
  2. Alterman, R., Zito-Wolf, R., & Carpenter, T. (1991). Interaction, comprehension, and instruction usage. Journal of the Learning Sciences, 1(3&4), 273{318.
  3. Anderson, J. R. (1983). The architecture of cognition. Harvard University Press, Cambridge, MA. Bergadano, F., & Giordana, A. (1988). A knowledge intensive approach to concept in- duction. In Proceedings of the International Conference on Machine Learning, pp. 305{317.
  4. Birmingham, W., & Klinker, G. (1993). Knowledge acquisition tools with explicit problem- solving methods. The Knowledge Engineering Review, 8(1).
  5. Birmingham, W., & Siewiorek, D. (1989). Automated knowledge acquisition for a computer hardware synthesis system. Knowledge Acquisition, 1, 321{340.
  6. Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as e ective as one-to-one tutoring. Educational Researcher, 13(6), 4{16.
  7. Brachman, R. J. (1980). An introduction to KL-ONE. In Brachman, R. J. (Ed.), Research in Natural Language Understanding, pp. 13{46. Bolt, Beranek and Newman Inc., Cambridge, MA.
  8. Carbonell, J. G., & Gil, Y. (1987). Learning by experimentation. In Proceedings of the International Workshop on Machine Learning, pp. 256{265.
  9. Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine learning. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An arti cial intelligence approach. Morgan Kaufmann.
  10. Carpenter, T., & Alterman, R. (1994). A reading agent. In Proceedings of the Twelfth National Conference on Arti cial Intelligence Seattle, WA.
  11. Chapman, D. (1990). Vision, Instruction, and Action. Ph.D. thesis, Massachusetts Institute of Technology, Arti cial Intelligence Laboratory.
  12. Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self- explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145{182.
  13. Cypher, A. (Ed.). (1993). Watch what I do: Programming by demonstration. MIT Press, Cambridge, Mass.
  14. Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules. Arti cial Intelligence, 12(2), 409{427.
  15. DeJong, G. F., & Mooney, R. J. (1986). Explanation-based learning: An alternative view. Machine Learning, 1(2), 145{176.
  16. Dent, L., Boticario, J., McDermott, J., Mitchell, T., & Zabowski, D. (1992). A personal learning apprentice. In Proceedings of the International Joint Conference on Arti cial Intelligence.
  17. DiEugenio, B. (1993). Understanding natural language instructions: A computational ap- proach to purpose clauses. Ph.D. thesis, University of Pennsylvania. IRCS Report 93-52.
  18. DiEugenio, B., & Webber, B. (1992). Plan recognition in understanding instructions. In Hendler, J. (Ed.), Proceedings of the First International Conference on Arti cial In- telligence Planning Systems, pp. 52{61 College Park, MD.
  19. Donoho, S. K., & Wilkins, D. C. (1994). Exploiting the ordering of observed problem-solving steps for knowledge ase re nement: An apprenticeship approach. In Proceedings of the 12th National Conference on Arti cal Intelligence Seattle, WA.
  20. Drummond, M. (1989). Situated control rules. In Proceedings of the First International Con- ference on Principles of Knowledge Representation Toronto, Canada. Morgan Kauf- mann.
  21. Emihovich, C., & Miller, G. E. (1988). Talking to the turtle: A discourse analysis of Logo instruction. Discourse Processes, 11, 183{201.
  22. Eshelman, L., Ehret, D., McDermott, J., & Tan, M. (1987). MOLE: A tenacious knowledge- acquisition tool. International Journal of Man-Machine Studies, 26(1), 41{54.
  23. Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Learning and executing generalized robot plans. Arti cial Intelligence, 3, 251{288.
  24. Ford, C. A., & Thompson, S. A. (1986). Conditionals in discourse: A text-based study from English. In Traugott, E. C. (Ed.), On Conditionals, pp. 353{72. Cambridge Univ. Press, Cambridge.
  25. Frederking, R. E. (1988). Integrated natural language dialogue: A computational model. Kluwer Academic Press, Boston.
  26. Golding, A., Rosenbloom, P. S., & Laird, J. E. (1987). Learning search control from outside guidance. In Proceedings of the Tenth International Joint Conference on Arti cial Intelligence, pp. 334{337.
  27. Grosz, B. J. (1977). The Representation and use of focus in dialogue understanding. Ph.D. thesis, University of California, Berkeley.
  28. Gruber, T. (1989). Automated knowledge acquisition for strategic knowledge. Machine Learning, 4(3-4), 293{336.
  29. Guha, R. V., & Lenat, D. B. (1990). Cyc: A mid-term report. AI Magazine, 11(3), 32{59.
  30. Haas, N., & Hendrix, G. G. (1983). Learning by being told: Acquiring knowledge for information management. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An arti cial intelligence approach. Morgan Kaufmann.
  31. Haiman, J. (1978). Conditionals are topics. Language, 54, 564{89.
  32. Hall, R. J. (1988). Learning by failing to explain. Machine Learning, 3(1), 45{77.
  33. Hayes-Roth, F., Klahr, P., & Mostow, D. J. (1981). Advice taking and knowledge re nement: An iterative view of skill acquisition. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition, pp. 231{253. Lawrence Erlbaum Associates, Hillsdale, NJ.
  34. Hu man, S. B. (1994). Instructable autonomous agents. Ph.D. thesis, University of Michi- gan, Dept. of Electrical Engineering and Computer Science.
  35. Hu man, S. B., & Laird, J. E. (1992). Dimensions of complexity in learning from interactive instruction. In Erickson, J. (Ed.), Proceedings of Cooperative Intelligent Robotics in Space III, SPIE Volume 1829.
  36. Hu man, S. B., & Laird, J. E. (1993). Learning procedures from interactive natural lan- guage instructions. In Utgo , P. (Ed.), Machine Learning: Proceedings of the Tenth International Conference.
  37. Hu man, S. B., & Laird, J. E. (1994). Learning from highly exible tutorial instruction. In Proceedings of the 12th National Conference on Arti cial Intelligence (AAAI-94)
  38. Seattle, WA.
  39. Hu man, S. B., Miller, C. S., & Laird, J. E. (1993). Learning from instruction: A knowledge- level capability within a uni ed theory of cognition. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, pp. 114{119.
  40. Johnson-Laird, P. N. (1986). Conditionals and mental models. In Traugott, E. C. (Ed.), On Conditionals. Cambridge Univ. Press, Cambridge.
  41. Jones, R. M., Tambe, M., Laird, J. E., & Rosenbloom, P. S. (1993). Intelligent auto- mated agents for ight training simulators. In Proceedings of the Third Conference on Computer Generated Forces, pp. 33{42 Orlando, FL.
  42. Just, M. A., & Carpenter, P. A. (1976). Verbal comprehension in instructional situations. In Klahr, D. (Ed.), Cognition and Instruction. Lawrence Erlbaum Associates, Hillsdale, NJ.
  43. Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. Cognitive Science, 8, 255{273.
  44. Kodrato , Y., & Tecuci, G. (1987a). DISCIPLE-1: Interactive apprentice system in weak theory elds. In Proceedings of the Tenth International Joint Conference on Arti cial Intelligence, pp. 271{273.
  45. Kodrato , Y., & Tecuci, G. (1987b). Techniques of design and DISCIPLE learning appren- tice. International Journal of Expert Systems, 1(1), 39{66.
  46. Laird, J. E., Congdon, C. B., Altmann, E., & Doorenbos, R. (1993). Soar user's manual, version 6..
  47. Laird, J. E., Hucka, M., Yager, E. S., & Tuck, C. M. (1990). Correcting and extending domain knowledge using outside guidance. In Proceedings of the Seventh International Conference on Machine Learning.
  48. Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Arti cial Intelligence, 33(1), 1{64.
  49. Laird, J. E., & Rosenbloom, P. S. (1990). Integrating execution, planning, and learning in Soar for external environments. In Proceedings of the Eighth National Conference on Arti cial Intelligence, pp. 1022{1029. AAAI Press.
  50. Lewis, C. (1988). Why and how to learn why: Analysis-based generalization of procedures. Cognitive Science, 12, 211{256.
  51. Lewis, R. L. (1993). An Architecturally-Based Theory of Human Sentence Comprehension. Ph.D. thesis, Carnegie Mellon University, School of Computer Science.
  52. Lewis, R. L., Newell, A., & Polk, T. A. (1989). Toward a Soar theory of taking instruc- tions for immediate reasoning tasks. In Proceedings of the Annual Conference of the Cognitive Science Society.
  53. Lindsay, R. K. (1963). Inferential memory as the basis of machines which understand natural language. In Feigenbaum, E. A., & Feldman, J. (Eds.), Computers and Thought, pp. 217{233. R. Oldenbourg KG.
  54. Maes, P. (1994). Agents that reduce work and information overload. Communications of the ACM, 37(7).
  55. Maes, P., & Kozierok, R. (1993). Learning interface agents. In Proceedings of the National Conference on Arti cial Intelligence, pp. 459{465.
  56. Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text, 8(3), 243{281.
  57. Marcus, S., & McDermott, J. (1989). SALT: A knowledge acquisition language for propose- and-revise systems. Arti cial Intelligence, 39(1), 1{37.
  58. Martin, C. E., & Firby, R. J. (1991). Generating natural language expectations from a reactive execution system. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society, pp. 811{815.
  59. McCarthy, J. (1968). The advice taker. In Minsky, M. (Ed.), Semantic Information Pro- cessing, pp. 403{410. MIT Press, Cambridge, Mass.
  60. Miller, C. M. (1993). A model of concept acquisition in the context of a uni ed theory of cognition. Ph.D. thesis, The University of Michigan, Dept. of Computer Science and Electrical Engineering.
  61. Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., & Gil, Y. (1989). Explanation-based learning: A problem-solving perspective. Arti cial Intelligence, 40, 63{118.
  62. Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994). Experience with a learning personal assistant. Communications of the ACM, 37(7).
  63. Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based general- ization: A unifying view. Machine Learning, 1.
  64. Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. (1990). LEAP: A learning apprentice system for VLSI design. In Kodrato , Y., & Michalski, R. S. (Eds.), Machine Learning: An arti cial intelligence approach, Vol. III. Morgan Kaufmann.
  65. Mooney, R. J. (1990). Learning plan schemata from observation: Explanation-based learn- ing for plan recognition. Cognitive Science, 14, 483{509.
  66. Mostow, D. J. (1983). Learning by being told: Machine transformation of advice into a heuristic search procedure. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An arti cial intelligence approach. Morgan Kaufmann.
  67. Musen, M. A. (1989). Automated support for building and extending expert models. Ma- chine Learning, 4(3-4), 347{376.
  68. Newell, A. (1981). The knowledge level. AI Magazine, 2(2), 1{20.
  69. Newell, A. (1990). Uni ed Theories of Cognition. Harvard University Press, Cambridge, Massachusetts.
  70. Newell, A., Yost, G., Laird, J. E., Rosenbloom, P. S., & Altmann, E. (1990). Formulating the problem space computational model. In Proceedings of the 25th Anniversary Symposium, School of Computer Science, Carnegie Mellon University.
  71. Pazzani, M. (1991a). A computational theory of learning causal relationships. Cognitive Science, 15, 401{424.
  72. Pazzani, M. (1991b). Learning to predict and explain: An integration of similarity-based, theory driven, and explanation-based learning. Journal of the Learning Sciences, 1(2), 153{199.
  73. Pearson, D. J., & Hu man, S. B. (1995). Combining learning from instruction with recovery from incorrect knowledge. In Gordon, D., & Shavlik, J. (Eds.), Proceedings of the 1995 Machine Learning Workshop on Agents that Learn from Other Agents.
  74. Pearson, D. J., Hu man, S. B., Willis, M. B., Laird, J. E., & Jones, R. M. (1993). A symbolic solution to intelligent real-time control. IEEE Robotics and Autonomous Systems, 11, 279{291.
  75. Pearson, D. J., & Laird, J. E. (1995). Toward incremental knowledge correction for agents in complex environments. In Muggleton, S., Michie, D., & Furukawa, K. (Eds.), Machine Intelligence, Vol. 15. Oxford University Press.
  76. Porter, B. W., Bareiss, R., & Holte, R. C. (1990). Concept learning and heuristic classi - cation in weak-theory domains. Arti cial Intelligence, 45(3), 229{263.
  77. Porter, B. W., & Kibler, D. F. (1986). Experimental goal regression: A method for learning problem-solving heuristics. Machine Learning, 1, 249{286.
  78. Redmond, M. A. (1992). Learning by observing and understanding expert problem solving. Ph.D. thesis, Georgia Institute of Technology.
  79. Rosenbloom, P. S., & Aasman, J. (1990). Knowledge level and inductive uses of chunking (EBL). In Proceedings of the National Conference on Arti cial Intelligence.
  80. Rosenbloom, P. S., & Laird, J. E. (1986). Mapping explanation-based generalization onto Soar. In Proceedings of the National Conference on Arti cial Intelligence, pp. 561{567.
  81. Rosenbloom, P. S., Laird, J. E., & Newell, A. (1988). The chunking of skill and knowledge. In Bouma, H., & Elsendoorn, A. G. (Eds.), Working Models of Human Perception, pp. 391{410. Academic Press, London, England.
  82. Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993a). The Soar Papers: Research on integrated intelligence. MIT Press, Cambridge, Mass.
  83. Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993b). The Soar Papers: Research on integrated intelligence. MIT Press, Cambridge, Mass.
  84. Rosenbloom, P. S., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An arti cial intelligence approach, Volume II. Morgan Kaufmann.
  85. Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Parallel distributed processing: Ex- plorations in the microstructure of cognition. MIT Press, Cambridge, MA.
  86. Rychener, M. D. (1983). The instructible production system: A retrospective analysis. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An arti cial intelligence approach, pp. 429{460. Morgan Kaufmann.
  87. Sandberg, J., & Wielinga, B. (1991). How situated is cognition?. In Proceedings of the International Joint Conference on Arti cial Intelligence, pp. 341{346.
  88. Schank, R. C. (1975). Conceptual Information Processing. American Elsevier, New York.
  89. Schank, R. C., & Leake, D. B. (1989). Creativity and learning in a case-based explainer. Arti cial Intelligence, 40, 353{385.
  90. Segre, A. M. (1987). A learning apprentice system for mechanical assembly. In Third IEEE Conference on Arti cial Intelligence for Applications, pp. 112{117.
  91. Shen, W. (1993). Discovery as autonomous learning from the environment. Machine Learn- ing, 12, 143{165.
  92. Simon, H. A. (1977). Arti cial intelligence systems that understand. In Proceedings of the Fifth International Joint Conference on Arti cial Intelligence, pp. 1059{1073.
  93. Simon, H. A., & Hayes, J. R. (1976). Understanding complex task instructions. In Klahr, D. (Ed.), Cognition and Instruction. Lawrence Erlbaum Associates, Hillsdale, NJ.
  94. Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Harvard University Press.
  95. Sutton, R. S., & Pinette, B. (1985). The learning of world models by connectionist networks. In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pp. 54{64.
  96. Thrun, S. B., & Mitchell, T. M. (1993). Integrating inductive neural network learning and explanation-based learning. In Proceedings of the International Joint Conference on Arti cial Intelligence, pp. 930{936.
  97. VanLehn, K. (1987). Learning one subprocedure per lesson. Arti cial Intelligence, 31(1), 1{40.
  98. VanLehn, K., Ball, W., & Kowalski, B. (1990). Explanation-based learning of correctness: Towards a model of the self-explanation e ect. In Proceedings of the 12th Annual Conference of the Cognitive Science Society, pp. 717{724.
  99. VanLehn, K., & Jones, R. (1991). Learning physics via explanation-based learning of cor- rectness and analogical search control. In Proceedings of the International Machine Learning Workshop.
  100. VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation e ect. Journal of the Learning Sciences, 2(1), 1{59.
  101. Vere, S., & Bickmore, T. (1990). A basic agent. Computational Intelligence, 6, 41{60.
  102. Wertsch, J. V. (1979). From social interaction to higher psychological processes: A clari - cation and application of Vygotsky's theory. Human Development, 22, 1{22.
  103. Widmer, G. (1989). A tight integration of deductive and inductive learning. In Proceedings of the International Workshop on Machine Learning, pp. 11{13.
  104. Wilkins, D. C. (1990). Knowledge base re nement as improving an incomplete and incorrect domain theory. In Kodrato , Y., & Michalski, R. S. (Eds.), Machine Learning: An Arti cial Intelligence Approach, Volume III, pp. 493{514. Morgan Kaufmann.
  105. Winograd, T. (1972). Understanding Natural Language. Academic Press, New York.
  106. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89{100.
  107. Yost, G. R. (1993). Acquiring knowledge in Soar. IEEE Expert, 8(3), 26{34.
  108. Yost, G. R., & Newell, A. (1989). A problem space approach to expert system speci cation. In Proceedings of the International Joint Conference on Arti cial Intelligence, pp. 621{7.