Academia.eduAcademia.edu

Outline

C*-algebras over topological spaces: the bootstrap class

2007

Abstract

We carefully define and study C * -algebras over topological spaces, possibly non-Hausdorff, and review some relevant results from point-set topology along the way. We explain the triangulated category structure on the bivariant Kasparov theory over a topological space and study the analogue of the bootstrap class for C * -algebras over a finite topological space.

References (19)

  1. Paul Alexandroff, Diskrete Räume, Mat. Sb. (N.S.) 2 (1937), 501-518 (German).
  2. Francisco García Arenas, Alexandroff spaces, Acta Math. Univ. Comenian. (N.S.) 68 (1999), no. 1, 17-25. MR 1711071
  3. William Arveson, Notes on extensions of C * -algebras, Duke Math. J. 44 (1977), no. 2, 329- 355. MR 0438137
  4. Alexander Bonkat, Bivariante K-Theorie für Kategorien projektiver Sys- teme von C * -Algebren, Ph.D. Thesis, Westf. Wilhelms-Universität Münster, 2002 (German). electronically available at the Deutsche Nationalbibliothek at http://deposit.ddb.de/cgi-bin/dokserv?idn=967387191 .
  5. Man Duen Choi and Edward G. Effros, The completely positive lifting problem for C * -algebras, Ann. of Math. (2) 104 (1976), no. 3, 585-609. MR 0417795
  6. Joachim Cuntz and Georges Skandalis, Mapping cones and exact sequences in KK-theory, J. Operator Theory 15 (1986), no. 1, 163-180. MR 816237
  7. Jacques Dixmier, Les C * -algèbres et leurs représentations, Deuxième édition. Cahiers Scien- tifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). MR 0246136
  8. Heath Emerson and Ralf Meyer, Dualities in equivariant Kasparov theory (2007), eprint. arXiv:0711.0025.
  9. Gennadi G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147-201. MR 918241
  10. Eberhard Kirchberg, Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, C * -Algebras (Münster, 1999), Springer, Berlin, 2000, pp. 92-141 (German). MR 1796912
  11. Saunders Mac Lane, Homology, Classics in Mathematics, Springer, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
  12. Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York, 1971. Graduate Texts in Mathematics, Vol. 5. MR 0354798
  13. Ralf Meyer, Homological algebra in bivariant K-theory and other triangulated categories. II (2008), eprint. arXiv:0801.1344.
  14. Ralf Meyer and Ryszard Nest, The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209-259. MR 2193334
  15. Homological algebra in bivariant K-theory and other triangulated categories. I (2007), eprint. arXiv:math.KT/0702146.
  16. C * -Algebras over topological spaces: filtrated K-theory (2007), eprint. arXiv:0810.0096.
  17. May Nilsen, C * -bundles and C 0 (X)-algebras, Indiana Univ. Math. J. 45 (1996), no. 2, 463- 477. MR 1414338
  18. Mikael Rørdam and Erling Størmer, Classification of nuclear C * -algebras. Entropy in opera- tor algebras, Encyclopaedia of Mathematical Sciences, vol. 126, Springer-Verlag, Berlin, 2002. Operator Algebras and Non-commutative Geometry, 7. MR 1878881
  19. Claude L. Schochet, Topological methods for C * -algebras. I. Spectral sequences, Pacific J. Math. 96 (1981), no. 1, 193-211. MR 0634772