A semantic analysis of some distributive logics with negation
2013, Reports on Mathematical Logic
https://doi.org/10.4467/20842589RM.13.004.1256Abstract
AI
AI
The study delves into the semantics of distributive logics incorporating negation, emphasizing their algebraic and relational structures. It unifies various logics under the umbrella of ¬-lattices and scrutinizes deductive systems derived from these logics. The focus is on understanding implications and frameworks that govern these systems, with a particular emphasis on conditions that render certain rules valid.
References (17)
- F. Bou, F. Esteva, J. M. Font, A. Gil, L. Godo, A. Torrens, A., and V. Verdú, Logics preserving degrees of truth from varieties of residuated lattices, Journal of Logic and Computation 19 (2009), pp. 1031-1069.
- R. Ertola, M. Sagastume, Subminimal logic and weak algebras, Reports on Math. Logic 44 (2009), pp. 153-166.
- R. Dwinger and P.H. Balbes, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.
- P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoret- ical Computer Science 53, Cambridge University Press, 2001.
- S. A. Celani, Distributive lattices with a negation operator, Math. Logic Quarterly 45 (1999), pp. 207-218.
- S. A. Celani, Notes on the representation of distributive modal algebras, Miskolc Mathematical Notes 9:2 (2008), pp. 81-89.
- S A. Celani and L. M. Cabrer, Weak-quasi-Stone algebras, Math. Logic Quarterly 55:3 (2009), pp. 288-298.
- K. Dosěn:. Negative modal operator in intuitionistic logic, Publications de L'Institut Mathématique (Beograd) (N.S) 35:49 (1984), pp. 3-14.
- K. Dosěn, Negation as a modal operator, Reports on Mathematical Logic 20 (1986), pp. 15-27.
- J. Michael Dunn, C. Zhou, Negation in the Context of Gaggle Theory, Studia Logica 80:2-3 (2005), pp. 235-264.
- J. M. Font, On semilattice-based logics with an algebraizable assertional companion, Reports on Mathematical Logic 46 (2011), pp. 109-132.
- R. Jansana, Selfextensional Logics with a Conjunction, Studia Logica 84:1 (2006), pp. 63-104.
- S. P. Odintsov, Combining intuitionistic connectives and Routley negation, Siberian Electronic Mathematical Reports (2010), pp. 21-41.
- H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 3:24 (1972), pp. 507-530.
- N. A. Sankappanavar and H. P. Sankappanavar, Quasi-Stone algebras, Math. Logic Quarterly 39 (1993), pp. 255-268.
- Y. Shramko, Dual Intuitionistic Logic and a Variety of Negations. The Logic of Scientific Research, Studia Logica 80:2-3 (2005), pp. 347-367.
- CONICET and Departamento de Matematicas, Facultad de Ciencias Exactas, Universidad Nacional del Centro Pinto 399