Academia.eduAcademia.edu

Outline

A semantic analysis of some distributive logics with negation

2013, Reports on Mathematical Logic

https://doi.org/10.4467/20842589RM.13.004.1256

Abstract
sparkles

AI

The study delves into the semantics of distributive logics incorporating negation, emphasizing their algebraic and relational structures. It unifies various logics under the umbrella of ¬-lattices and scrutinizes deductive systems derived from these logics. The focus is on understanding implications and frameworks that govern these systems, with a particular emphasis on conditions that render certain rules valid.

References (17)

  1. F. Bou, F. Esteva, J. M. Font, A. Gil, L. Godo, A. Torrens, A., and V. Verdú, Logics preserving degrees of truth from varieties of residuated lattices, Journal of Logic and Computation 19 (2009), pp. 1031-1069.
  2. R. Ertola, M. Sagastume, Subminimal logic and weak algebras, Reports on Math. Logic 44 (2009), pp. 153-166.
  3. R. Dwinger and P.H. Balbes, Distributive Lattices, University of Missouri Press, Columbia, MO, 1974.
  4. P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoret- ical Computer Science 53, Cambridge University Press, 2001.
  5. S. A. Celani, Distributive lattices with a negation operator, Math. Logic Quarterly 45 (1999), pp. 207-218.
  6. S. A. Celani, Notes on the representation of distributive modal algebras, Miskolc Mathematical Notes 9:2 (2008), pp. 81-89.
  7. S A. Celani and L. M. Cabrer, Weak-quasi-Stone algebras, Math. Logic Quarterly 55:3 (2009), pp. 288-298.
  8. K. Dosěn:. Negative modal operator in intuitionistic logic, Publications de L'Institut Mathématique (Beograd) (N.S) 35:49 (1984), pp. 3-14.
  9. K. Dosěn, Negation as a modal operator, Reports on Mathematical Logic 20 (1986), pp. 15-27.
  10. J. Michael Dunn, C. Zhou, Negation in the Context of Gaggle Theory, Studia Logica 80:2-3 (2005), pp. 235-264.
  11. J. M. Font, On semilattice-based logics with an algebraizable assertional companion, Reports on Mathematical Logic 46 (2011), pp. 109-132.
  12. R. Jansana, Selfextensional Logics with a Conjunction, Studia Logica 84:1 (2006), pp. 63-104.
  13. S. P. Odintsov, Combining intuitionistic connectives and Routley negation, Siberian Electronic Mathematical Reports (2010), pp. 21-41.
  14. H. A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 3:24 (1972), pp. 507-530.
  15. N. A. Sankappanavar and H. P. Sankappanavar, Quasi-Stone algebras, Math. Logic Quarterly 39 (1993), pp. 255-268.
  16. Y. Shramko, Dual Intuitionistic Logic and a Variety of Negations. The Logic of Scientific Research, Studia Logica 80:2-3 (2005), pp. 347-367.
  17. CONICET and Departamento de Matematicas, Facultad de Ciencias Exactas, Universidad Nacional del Centro Pinto 399