Academia.eduAcademia.edu

Outline

Hidden modalities in algebras with negation and implication

2013, Math. Appl.

https://doi.org/10.13164/MA.2013.02

Abstract

Lukasiewicz 3-valued logic may be seen as a logic with hidden truthfunctional modalities defined by ♦A := ¬A → A and A := ¬(A → ¬A). It is known that axioms (K), (T), (B), (D), (S4), (S5) are provable for these modalities, and rule (RN) is admissible. We show that, if analogously defined modalities are adopted in Lukasiewicz 4-valued logic, then (K), (T), (D), (B) are provable, and (RN) is admissible. In addition, we show that in the canonical n-valued Lukasiewicz-Moisil algebras Ln, identities corresponding to (K), (T), and (D) hold for all n ≥ 3 and 1 = 1. We define analogous operations in residuated lattices and show that residuated lattices determine modal systems in which axioms (K) and (D) are provable and 1 = 1 holds. Involutive residuated lattices satisfy also the identity corresponding to (T). We also show that involutive residuated lattices do not satisfy identities corresponding to (S4) nor (S5). Finally, we show that in Heyting algebras, and thus in intuitionistic logic, ♦ and are equal, and they correspond to the double negation ¬¬.

References (18)

  1. R. Balbes and Ph. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, Missouri, 1974.
  2. R. Cignoli, The algebras of Lukasiewicz many-valued logic: A historical overview, Lecture Notes in Comput. Sci. 4460 (2007), 69-83.
  3. R. Cignoli and M. S. de Gallego, The lattice structure of some Lukasiewicz algebras, Algebra Universalis 13 (1981), 315-328.
  4. G. Fischer Servi, Axiomatizations for some intuitionistic modal logics, Rend. Semin. Mat. Univ. Politec. Torino 42 (1984), 179-194.
  5. G. Georgescu, N -valued logics and Lukasiewicz-Moisil algebras, Axiomathes 16 (2006), 123-136.
  6. P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
  7. Petr Hájek, On very true, Fuzzy Sets and Systems 124 (2001), 329-333.
  8. L. Iturrioz, Lukasiewicz and symmetrical Heyting algebras, MLQ Math. Log. Q. 23 (1977) 131-136.
  9. J. Järvinen and S. Radeleczki, Representation of Nelson algebras by rough sets determined by quasiorders, Algebra Universalis 66 (2011), 163-179.
  10. E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000.
  11. W. Kneale and M. Kneale, The Development of Logic, Oxford University Press, 1962.
  12. M. Kondo, M. F. Kawaguchi, M. Miyakoshi and O. Watari, Weak uninorm based logic and its filter theory, in: Proceedings of the 41st IEEE International Symposium on Multiple-Valued Logic (ISMVL 2011), 69-72.
  13. J. K. Mattila, Many-valuation, modality, and fuzziness, Stud. Fuzziness Soft Comput. 273 (2009), 231-260.
  14. P. Pagliani and M. Chakraborty, A Geometry of Approximation. Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns, Springer, 2008.
  15. Z. Pawlak, Rough sets, Internat. J. Comp. & Inf. Sci. 11 (1982), 341-356.
  16. H. Rasiowa, An Algebraic Approach to Non-Classical Logics, North-Holland, Amsterdam, 1974.
  17. N. Rescher, Many-valued Logic, McGraw-Hill, New York, 1969. Jouni Järvinen, Sirkankuja 1, FI-20810 Turku, Finland e-mail: jouni.kalervo.jarvinen@gmail.com Michiro Kondo, School of Information Environment, Tokyo Denki University, Inzai 270-1382, Japan e-mail: kondo@sie.dendai.ac.jp
  18. Jorma K. Mattila, Lappeenranta University of Technology, Department of Mathematics and Physics, P.O. Box 20, FI-53851 Lappeenranta, Finland e-mail: jorma.mattila@lut.fi Sándor Radeleczki, Institute of Mathematics, University of Miskolc, 3515 Miskolc- Egyetemváros, Hungary e-mail: matradi@uni-miskolc.hu