The Gap Between Partial and Full
1998, International Journal of Algebra and Computation
Abstract
We show that the interval of the lattice of semigroup pseudovarieties between the pseudovarieties generated by all semigroups of full and respectively, partial, order-preserving transformations of a finite chain, contains a chain isomorphic to the chain of real numbers (with the usual order). Similar results are proved for several related intervals.
References (9)
- J. Almeida, Semigrupos Finitos e Algebra Universal, Universidade de São Paulo, 1992 English Translation Finite Semigroups and Universal Algebra, World Scien- ti c, Singapore, 1995].
- J. Almeida and P.M. Higgins, Monoids respecting n-chains of intervals, J. Al- gebra 187 (1997) 183{202.
- J. Almeida, M.V. Volkov, The gap between partial and full, Int. J. Algebra Computation 8 (1998), 399{430.
- P. M. Higgins, Divisors of semigroups of order-preserving transformations on a nite chain, Int. J. Algebra Computation 5 (1995) 725{742.
- J-E. Pin, Vari et es de langages formels, Masson, 1984 English Translation Vari- eties of formal languages, North Oxford Academic, 1986 and Plenum, 1986].
- H. Straubing, On nite J-trivial monoids, Semigroup Forum 19 (1980) 107{ 110.
- L. Teixeira, On semidirectly closed pseudovarieties of aperiodic semigroups, sub- mitted.
- A.S. Vernitski and M.V. Volkov, A proof and a generalisation of Higgins' divi- sion theorem for semigroups of order-preserving mappings, Izv. vuzov. Matem- atika (1995) No.1, 38{44 Russian; English Translation Russ. Math., Izv. VUZ 39 (1995) no.1, 34{39].
- J. Almeida Departamento de Matem atica Pura Faculdade de Ciências Universidade do Porto 4050 Porto PORTUGAL P.M. Higgins Department of Mathematics University of Essex Wivenhoe Park Colchester CO4 3SQ GREAT BRITAIN M.V. Volkov Department of Mathematics and Mechanics Ural State University 620083 Ekaterinburg RUSSIA