Academia.eduAcademia.edu

Outline

Lattice paths and order-preserving partial transformations

Abstract

Let PO n be the semigroup of all order-preserving partial transformations of a finite chain. It is shown that there exist bijections between the set of certain lattice paths in the Cartesian plane that start at (0, 0), end at (n − 1, n − 1), and certain subsemigroups of PO n. Several consequences of these bijections were discussed.

References (24)

  1. I. Anderson, A first course in combinatorial mathematics, (Oxford University Press, 1974).
  2. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Mathematical Surveys 7 (Providence, R. I.: American Math. Soc., 1961).
  3. L. Comtet, Advanced Combinatorics: the art of finite and infinite expansions, D. Reidel Publishing Company, Dordrecht, Holland: 1974.
  4. G.U. Garba, Idempotents in partial transformation semigroups. Proc. Roy. Soc. Edinburgh 116 (1990), 359-366.
  5. G. U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Portugaliae Mathematica 51 (1994), 185-204.
  6. G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order- preserving transformations, Semigroup Forum, 45 (1992), 272-282.
  7. P. M. Higgins, Techniques of semigroup theory, (Oxford University Press, 1992).
  8. P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296.
  9. J. M. Howie, Fundamentals of semigroup theory (Oxford: Clarendon Press, 1995).
  10. J. M. Howie, Products of idempotents in certain semigroups of order-preserving transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223-236.
  11. J. M. Howie, Combinatorial and probabilistic results in transformation semi- groups, Languages and Combinatorics II World Sci. Publishing, River Edge, NJ (1994), 200-206.
  12. A. Laradji and A. Umar, On certain finite semigroups of order-decreasing trans- formations I, Semigroup Forum 69 (2004), 184-200.
  13. A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, Journal of Integer Sequences 7 (2004), 04.3.8.
  14. A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278 (2004), 342-359.
  15. A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Communications in Algebra 32 (2004), 3017-3023.
  16. A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
  17. E. Pergola and R. A. Sulanke, Schröder Triangles, Paths and Parallelogram Poly- ominoes, Journal of Integer Sequences Vol. 1 (1998), 98.1.7.
  18. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, available at http://www.research.att.com/∼njas/sequences/.
  19. R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Amer. Math. Monthly 104 (1997), 344-350.
  20. M. Tainiter, A characterisation of idempotents in semigroups, J. Combin. Theory 5 (1968), 370-373.
  21. A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 129-142.
  22. A. Umar, Enumeration of certain finite semigroups of transformations, Discrete Math. 189 (1998), 291-297.
  23. A. Umar, On certain infinite semigroups of order-decreasing transformations I, Communications in Algebra Vol. 25 (9) (1997), 2987-2999.
  24. V.V. Vagner, Representations of ordered semigroups. Math. Sb. NS. 387 (1956), 203-240, translated in Amer. Math. Soc. Trans. (2) 36 (1964), 295-336.