A Note on the Automorphic Langlands Group
2002, Canadian Mathematical Bulletin
https://doi.org/10.4153/CMB-2002-049-1Abstract
Langlands has conjectured the existence of a universal group, an extension of the absolute Galois group, which would play a fundamental role in the classification of automorphic representations. We shall describe a possible candidate for this group. We shall also describe a possible candidate for the complexification of Grothendieck's motivic Galois group.
References (31)
- J. Arthur, The principle of functoriality. Bull. Amer. Math. Soc., to appear.
- D. Blasius, On multiplicities for SL(n). Israel J. Math. 88 (1994), 237-251.
- A. Borel, Automorphic L-functions. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. (2) 33, Amer. Math. Soc., 1979, 27-61.
- L. Clozel, Motifs et formes automorphes: Applications du principe de fonctorialité. In: Automorphic Forms, Shimura Varieties, and L-functions, Perspect. Math. (1) 11, Academic Press, 1990, 77-159.
- P. Deligne, Motifs et groupe de Taniyama. Lecture Notes in Math. 900, Springer-Verlag, New York, 1982, 261-297.
- P. Deligne and J. Milne, Tannakian categories. Lecture Notes in Math. 900, Springer-Verlag, New York, 1982, 101-228.
- M. Harris and R. Taylor, On the geometry and cohomology of some simple Shimura varieties. Ann. of Math. Studies 151, Princeton University Press, Princeton, 2001.
- G. Henniart, Une preuve simple des conjectives de Langlands de GL(n) sur un corps p-adique. Invent. Math. 139(2000), 439-455.
- H. Jacquet, Principal L-functions of the linear group. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. (2) 33, Amer. Math. Soc. 1979, 63-86.
- S. Kleiman, The standard conjectures. In: Motives, Proc. Sympos. Pure Math. (1) 55, Amer. Math. Soc. 1994, 3-20.
- R. Kottwitz, Rational conjugacy classes in reductive groups. Duke Math. J. 49(1982), 785-806.
- Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(1984), 611-650.
- R. Kottwitz and D. Shelstad, Foundations of Twisted Endoscopy. Ast érisque 255, 1999, Soc. Math. de France.
- J.-P. Labesse, Cohomologie, L-groupes et functorialité. Compositio Math. 55(1985), 163-184.
- LL] J.-P. Labesse and R. Langlands, L-indistinguishability for SL 2 . Canad. J. Math. 31(1979), 726-785.
- R. Langlands, Problems in the theory of automorphic forms. Lecture Notes in Math. 170, Springer-Verlag, 1970, 18-86.
- Representations of abelian algebraic groups. Pacific J. Math. (1997), Special Issue, 231-250.
- On the classification of irreducible representations of real algebraic groups. In: Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Amer. Math. Soc. Math. Surveys and Monographs 31, 1989, 101-170.
- On the notion of an automorphic representation. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math. (1) 33, Amer. Math. Soc. 1979, 203-208.
- Automorphic representations, Shimura varieties, and motives. Ein Märchen. In: Automorphic Forms, Representations and L-functions, Pure Math. (2) 33, Amer. Math. Soc. 1979, 205-246.
- Stable conjugacy: definitions and lemmas. Canad. J. Math. 31(1979), 700-725.
- Beyond endoscopy. Institute for Advanced Study, Princeton, (2001), preprint.
- R. Langlands and D. Shelstad, On the definition of transfer factors. Math. Ann. 278(1987), 219-271.
- M. Larsen, On the conjugacy of element-conjugate homomorphisms. Israel J. Math. 88(1994), 253-277.
- On the conjugacy of element conjugate homomorphisms II. Quart. J. Math. Oxford Ser.
- J. Milne and K.-Y. Shih, Langlands' construction of the Taniyama group. Lecture Notes in Math 900, Springer Verlag, New York, 1982, 229-260.
- D. Ramakrishnan, Pure motives and automorphic forms. In: Motives, Proc. Sympos. Pure Math. (2) 55, Amer. Math. Soc. 1994, 411-446.
- J.-P. Serre, Abelian l-adic Representations and Elliptic Curves. Benjamin, New York, 1968.
- Propriétés conjecturales des groups de Galois motiviques et representations -adiques. In: Motives, Proc. Sympos. Pure Math. (1) 55, Amer. Math. Soc. 1994, 377-400.
- J. Tate, Number theoretic background. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure. Math. (2) 33, Amer. Math. Soc. 1979, 3-26.
- S. Wang, in preparation.