Academia.eduAcademia.edu

Outline

Central morphisms and Cuspidal automorphic Representations

2018, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1812.03033

References (24)

  1. Artin E., Tate J.T., Class field theory. W. A. Benjamin, Inc., New York, Amsterdam, 1968; [Ad- vanced Book Classics, Addison-Wesley Publishing Company, Inc., Redwood City, CA, 1990].
  2. Bernstein I. N., All reductive p-adic groups are of type I. Funkcional. Anal. i Prilozen. 8 (1974), no. 2, 3-6.
  3. Blasius D., On multiplicities for SL(n). Israël Journal of Math. 88 (1994), 237-251.
  4. Borel A., Linear Algebraic Groups, Second Enlarged Edition, Graduate Texts in Math., vol. 126, Springer-Verlag, New York, 1991.
  5. Borel A., Tits J., Compléments à l'article "Groupes Réductifs", Publ. Math. I.H.É.S 41 (1972), 253-276.
  6. Chenevier G., On restrictions and extensions of cusp forms, Private communication
  7. Conrad B., Finiteness theorems for algebraic groups over function fields, Compos. Math. 148 (2012), no. 2, 555-639.
  8. Curtis, C. W. Reiner I., Representation theory of finite groups and associative algebras, A Wiley- Interscience Publication. John Wiley Sons, Inc., New York, 1988
  9. Gelbart S. S., Knapp A. W., L-indistinguishability and R groups for the special linear group. Adv. in Math. 43 (1982) no. 2, 101-121.
  10. Harder G., Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. J. Reine Angew. Math. 274/275 (1975), 125-138.
  11. Henniart G., Représentations des groupes réductifs p-adiques et de leurs sous-groupes distingués cocompacts. Journal of Algebra. 236 (2001), 236-245,
  12. Hiraga K., Saito H., On L-packets for inner forms of SLn. Mem. Amer. Math. Soc. 215 (2012), no. 1013,
  13. Kottwitz R., Shelstad D., Foundations of twisted endoscopy, Asterisque 255 (1999)
  14. Labesse J.-P., Cohomologie, L-groupes et fonctorialité, Compositio Math.. 55 (1985), 163-184.
  15. Labesse J.-P., Cohomologie, stabilisation et changement de base, Asterisque 257 (1999)
  16. Labesse J.-P., Langlands R.P., L-indistinguishability for SL(2), Can. J. Math. 31 (1979), 726-785.
  17. Labesse J.-P., Schwermer J., On liftings and cusp cohomology of arithmetic groups, Invent. Math. 83 (1986), 383-401.
  18. Mackey G.W., Induced Representations of Locally Compact Groups II. The Frobenius Reciprocity Theorem, Ann. of Maths. (2), 58 (1953), 193-221.
  19. Milne J.S., Points on a Shimura Variety, Appendix B in "The Zeta Function of Picard Modular Surfaces" , Les publications CRM, Montréal (1992), 229-244.
  20. Moore C.C., On The Frobenius Reciprocity Theorem for Locally Compact Groups. Pacific J. of Mathematics, 12 No. 1 (1962), 359-365.
  21. Moeglin C., Waldspurger J.-L., Décomposition spectrale et séries d'Eisenstein, Progress in Math. 113 Birkhäuser(1994).
  22. Silberger A., Isogeny restrictions of irreducible admissible representations are finite direct sums of irreducible admissible representations, Proc. Amer. Math. Soc. 73 (1979) No. 2, 263-264.
  23. Springer T. A. Reduction theory over global fields, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 207-216.
  24. Tadic M., Notes on representations of non archimedean SL(n), Pacific J. of Math. 152 No. 2 (1992), 375-396.