Homomorphisms on a class of commutative Banach algebras
2013, Rocky Mountain Journal of Mathematics
https://doi.org/10.1216/RMJ-2013-43-2-395Abstract
We derive representations for homomorphisms and isomorphisms between Banach algebras of Lipschitz functions with values in a sequence space, including ∞. We show that such homomorphisms are automatically continuous and preserve the * operation. We also give necessary conditions for the compactness of homomorphisms in these settings and give characterizations for the isometric isomorphisms. 2010 AMS Mathematics subject classification. Primary 46J10, 47B48, Secondary 47L10. Keywords and phrases. Banach algebras of Lipschitz functions, algebra homomorphisms, algebra isomorphisms, sequence valued Lipschitz function spaces.
References (28)
- B. Aupetit, A primer on spectral theory, Springer Verlag New York, 1991.
- F. Bonsall and J. Duncan, Complete normed algebras, Springer Verlag, Berlin, 1970.
- F. Botelho and J. Jamison, Homomorphisms on algebras of Lipschitz functions, Stud. Math. 199 (2010), 95 106.
- M. Day, Normed linear spaces, Third edition, Ergeb. Math. Grenzg. 21 (1973), Springer Verlag, New York.
- J. Diestel and J. Uhl, Vector measures, Math. Surv. 15, Mathematical Surveys, American Mathematical Society, Providence, RI, 1977.
- R. Douglas, Banach algebras techniques in operator theory, Academic Press, New York, 1972.
- J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1970.
- N. Dunford and J. Schwartz, Linear operators. Part I: General topology, Interscience Publishers, Inc., New York, 1957.
- R. Fleming and J. Jamison, Hermitian operators on C(X, E) and the Banach- Stone theorem, Math. Z. 170 (1980), 77 84.
- A. Friedman, Foundation of modern analysis, Dover Publications, Inc., New York, 1982.
- I. Gelfand and A. Kolmogoroff, On rings of continuous functions on a topological space, Dokl. Akad. Nauk 22 (1939), 11 15.
- J.B. Gonzàlez and J.R. Ram írez, Homomorphisms on Lipschitz spaces, Monats. Math. 129 (2000), 25 30.
- J. Heinonen, Lectures on analysis on metric spaces, Springer Verlag, New York, 2001.
- B. Johnson, The uniqueness of the (complete) norm topology, AMS Bull. 73 (1967), 537 539.
- R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebras Elementary theory, Vol. I, Academic Press, Inc., London, 1983.
- H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, Stud. Math. 96 (1990), 255 261.
- I. Kaplansky, Algebraic and analytic aspects of operator algebras, Reg. Conf.
- Ser. Math., American Mathematical Society, Providence, RI, 1970.
- I. Kaplansky, Fields and rings, Chicago Lect. Math., Chicago University Press, Chicago, 1969.
- W. Light and E. Cheney, Approximation theory in tensor product spaces, Lect. Notes Math. 1169, Springer Verlag, New York, 1980.
- L. Molnár, A reflexivity problem concerning the C * -algebra C(X) B(H), Proc. Amer. Math. Soc. 129 (2002), 531 537.
- Selected preserver problems on algebraic structures of linear operators and on function spaces, Lect. Notes Math. 1895, Springer Verlag, Berlin, 2007.
- C. Rickart, General theory of Banach algebras, D. Van Nostrand Company, Inc., New York, 1960.
- W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
- D. Sherbert, Banach algebras of Lipschitz functions, Pacific J. Math. 13 (1963), 1387 1399.
- R. Walker, The Stone-Čech compactification, Springer Verlag, Berlin, 1974.
- N. Weaver, Lipschitz algebras, World Scientific Publishing Co., Singapore, 1999.
- A. Wilansky, Functional analysis, Blaisdell Publishing Company, New York, 1964. 28. , Topology for analysis, Robert E. Krieger Publishing Company, Malabar, Florida, 1970.