Academia.eduAcademia.edu

Outline

A generalization of the Bernoulli polynomials

2003, Journal of Applied Mathematics

https://doi.org/10.1155/S1110757X03204101

Abstract

A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951).

References (16)

  1. R. P. Agarwal, A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci. Paris Ser. A-B 236 (1953), 2031-2032 (French).
  2. P. Appell, Sur une classe de polynômes, Ann. Sci. École Norm. Sup. (2) 9 (1880), 119-144 (French).
  3. J. Bernoulli, Ars Conjectandi, Thurnisiorum, Basel, 1713 (Italian).
  4. G. Dattoli, P. E. Ricci, and C. Cesarano, Differential equations for Appell type polynomials, Fract. Calc. Appl. Anal. 5 (2002), no. 1, 69-75.
  5. C. Frappier, Representation formulas for entire functions of exponential type and generalized Bernoulli polynomials, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 307-316.
  6. L. Gatteschi, Funzioni Speciali, Unione Tipografico-Editrice Torinese (UTET), Torin, 1973 (Italian).
  7. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Aca- demic Press, New York, 1980.
  8. M. X. He and P. E. Ricci, Differential equations of some classes of special functions via the factorization method, to appear in J. Comput. Anal. Appl.
  9. Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math. 139 (2002), no. 2, 231-237.
  10. L. Infeld and T. E. Hull, The factorization method, Rev. Modern Phys. 23 (1951), 21-68.
  11. B. Nath, A generalization of Bernoulli numbers and polynomials, Gan . ita 19 (1968), no. 1, 9-12.
  12. I. Podlubny, Fractional Differential Equations, Mathematics in Science and En- gineering, vol. 198, Academic Press, California, 1999.
  13. L. Saalschuetz, Vorlesungen über dir Bernoullischen Zahlen, Springer, Berlin, 1893 (German).
  14. I. M. Sheffer, A differential equation for Appell polynomials, Bull. Amer. Math. Soc. 41 (1935), 914-923.
  15. J. Stoer, Introduzione all'Analisi Numerica, Zanichelli, Bologna, 1972 (Italian).
  16. F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma func- tions, Pacific J. Math. 1 (1951), 133-142.