Generalizations of the Bernoulli and Appell polynomials
2004, Abstract and Applied Analysis
https://doi.org/10.1155/S1085337504306263Abstract
We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. The main properties of these polynomial sets are shown. In particular, the differential equations can be constructed by means of the factorization method.
References (25)
- R. P. Agarwal, A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci. Paris 236 (1953), 2031-2032 (French).
- P. Appell, Sur une classe de polynômes, Ann. Sci. Ecole Norm. Sup. (2) 9 (1880), 119-144 (French).
- P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques. Polynômes d'Hermite, Gauthier-Villar, Paris, 1926.
- G. Bretti, M. X. He, and P. E. Ricci, On quadrature rules associated with Appell polynomials, Int. J. Appl. Math. 11 (2002), no. 1, 1-14.
- G. Bretti and P. E. Ricci, Multidimensional extensions of the Bernoulli and Appell polynomials, to appear in Taiwanese J. Math.
- Euler polynomials and the related quadrature rule, Georgian Math. J. 8 (2001), no. 3, 447-453.
- G. Dattoli, S. Lorenzutta, and C. Cesarano, Finite sums and generalized forms of Bernoulli poly- nomials, Rend. Mat. Appl. (7) 19 (1999), no. 3, 385-391.
- G. Dattoli, P. E. Ricci, and C. Cesarano, Differential equations for Appell type polynomials, Fract. Calc. Appl. Anal. 5 (2002), no. 1, 69-75.
- G. Dattoli, P. E. Ricci, and H. M. Srivastava, Two-index multidimensional Gegenbauer polynomi- als and their integral representations, Math. Comput. Modelling 37 (2003), no. 3-4, 283-291.
- K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 70 (1996), no. 2, 279-295.
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vols. I, II, McGraw-Hill, New York, 1953.
- C. Frappier, Representation formulas for entire functions of exponential type and generalized Bernoulli polynomials, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 307-316.
- H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Her- mite polynomials, Duke Math. J. 29 (1962), 51-63.
- M. X. He and P. E. Ricci, Differential equations of some classes of special functions via the factor- ization method, to appear in J. Comput. Appl. Math.
- Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math. 139 (2002), no. 2, 231-237.
- L. Infeld and T. E. Hull, The factorization method, Rev. Mod. Phys. 23 (1951), no. 1, 21-68.
- M. E. H. Ismail, Remarks on "Differential equation of Appell polynomials via the factorization method", J. Comput. Appl. Math. 154 (2003), no. 1, 243-245.
- P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. (2003), no. 3, 155-163.
- B. Nath, A generalization of Bernoulli numbers and polynomials, Gan . ita 19 (1968), no. 1, 9-12.
- I. M. Sheffer, A differential equation for Appell polynomials, Bull. Amer. Math. Soc. 41 (1935), 914-923.
- H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Wiley, New York, 1984.
- J. Stoer, Introduzione all'Analisi Numerica, Zanichelli, Bologna, 1972.
- F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133-142.
- D. V. Widder, The Heat Equation, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.
- Gabriella Bretti: Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università degli Studi di Roma "La Sapienza," 00161 Roma, Italy E-mail address: bretti@dmmm.uniroma1.it