Academia.eduAcademia.edu

Outline

NEURONAL PATHWAY AND SIGNAL MODULATION FOR MOTOR COMMUNICATION

2018, CYBERNETICS AND PHYSICS, VOL. 8, NO. 3, 2019, 106–113

https://doi.org/10.35470/2226-4116-2019-8-3-106-113

Abstract

The knowledge of the mechanisms of motor imagery (MI) is very important for the development of brain-computer interfaces. Depending on neurophysiologi-cal cortical activity, MI can be divided into two categories: visual imagery (VI) and kinesthetic imagery (KI). Our magnetoencephalography (MEG) experiments with ten untrained subjects provided evidences that in-hibitory control plays a dominant role in KI. We found that communication between inferior parietal cortex and frontal cortex is realised in the mu-frequency range. We also pinpointed three gamma frequencies to be used for motor command communication. The use of artificial intelligence allowed us to classify MI of left and right hands with maximal classification accuracy using the brain activity encoded in the identified gamma frequencies which were then proposed to be used for communication of specifics. Mu-activity was identified as the carrier of gamma-activity between these areas by means of phase-amplitude coupling similar to the modern day radio wave transmission.

Key takeaways
sparkles

AI

  1. Inhibitory control is crucial for kinesthetic imagery (KI) in motor command communication.
  2. Magnetoencephalography (MEG) reveals communication between inferior parietal cortex and frontal cortex in the mu-frequency range.
  3. Gamma frequencies (32, 45, 48 Hz) encode specifics of motor commands, while mu-activity serves as a carrier wave.
  4. Artificial neural networks achieved 85% classification accuracy for left/right hand imagery based on MEG signals.
  5. The study enhances understanding of motor imagery mechanisms, aiding brain-computer interface development.

References (72)

  1. Wavelets in Physics, chapter Wavelets in medicine and physiology. Cambridge Univ. Press. (2006). Encyclopedia of Biomedical Engineering, vol. 2, chapter EEG based brain-computer interface system, pp. 1156-66. New Jersey: John Wiley and Sons, 1 edition.
  2. Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive review of EEG- based brain-computer interface paradigms. Journal of Neural Engineering, 16 (1), pp. 011001.
  3. Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., and Zhang, H. (2012). Filter Bank Common Spatial Pattern Al- gorithm on BCI Competition IV Datasets 2a and 2b. Frontiers in neuroscience, 6, pp. 39.
  4. Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., and Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107 (7), pp. 3228-33.
  5. Baxter, B. S., Decker, A., and He, B. (2013). Nonin- vasive control of a robotic arm in multiple dimensions using scalp electroencephalogram. In 2013 6th Inter- national IEEE/EMBS Conference on Neural Engineer- ing (NER), IEEE, nov, pp. 45-47.
  6. Bi, L., Fan, X.-A., and Liu, Y. (2013). EEG-Based Brain-Controlled Mobile Robots: A Survey. IEEE Transactions on Human-Machine Systems, 43 (2), pp. 161-176.
  7. Birbaumer, N. (2006). Breaking the silence: Brain?computer interfaces (BCI) for communication and motor control. Psychophysiology, 43 (6), pp. 517- 532.
  8. Birbaumer, N. and Cohen, L. G. (2007). Brain-computer interfaces: communication and restoration of move- ment in paralysis. The Journal of Physiology, 579 (3), pp. 621-636.
  9. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., and Flor, H. (1999). A spelling device for the paral- ysed. Nature, 398 (6725), pp. 297-298.
  10. Bressler, S. L. (1995). Large-scale cortical networks and cognition. Brain Research Reviews, 20 (3), pp. 288- 304.
  11. Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., and Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science (New York, N.Y.), 313 (5793), pp. 1626-8.
  12. Chen, C.-W., K. Lin, C.-C., and J Ming, S. (2008). Hand orthosis controlled using brain-computer interface. J of Med and Biol Eng, 29, pp. 234-241.
  13. Chholak, P., Niso, G., Maksimenko, V. A., Kurkin, S. A., Frolov, N. S., Pitsik, E. N., Hramov, A. E., and Pis- archik, A. N. (2019). Visual and kinesthetic modes af- fect motor imagery classification in untrained subjects. Scientific Reports 2019 9:1, 9 (1), pp. 9838.
  14. Craik, A., He, Y., and Contreras-Vidal, J. L. (2019). Deep learning for electroencephalogram (EEG) clas- sification tasks: a review. Journal of Neural Engineer- ing, 16 (3), pp. 031001.
  15. Daly, J. J. and Wolpaw, J. R. (2008). Brain-computer interfaces in neurological rehabilitation. The Lancet Neurology, 7 (11), pp. 1032-1043.
  16. Demiralp, T., Bayraktaroglu, Z., Lenz, D., Junge, S., Busch, N. A., Maess, B., Ergen, M., and Herrmann, C. S. (2007). Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Inter- national Journal of Psychophysiology, 64 (1), pp. 24- 30.
  17. Dragoi, G. and Buzsáki, G. (2006). Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies. Neuron, 50 (1), pp. 145-157.
  18. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9 (10), pp. 474-480.
  19. Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., and Doyon, J. (2009). Brain activity dur- ing visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping, 30 (7), pp. 2157-2172.
  20. Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., and Collet, C. (2012). Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Frontiers in human neuroscience, 6, pp. 247.
  21. Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., and Redish, A. D. (2012). Segmentation of spatial ex- perience by hippocampal θ sequences. Nature neuro- science, 15 (7), pp. 1032-9.
  22. Halme, H.-L. and Parkkonen, L. (2016). Comparing Fea- tures for Classification of MEG Responses to Motor Imagery. PLoS ONE, 11 (12), pp. e0168766.
  23. Halme, H.-L. and Parkkonen, L. (2018). Across-subject offline decoding of motor imagery from MEG and EEG. Scientific Reports, 8 (1), pp. 10087.
  24. Hanakawa, T., Dimyan, M. A., and Hallett, M. (2008). Motor Planning, Imagery, and Execution in the Dis- tributed Motor Network: A Time-Course Study with Functional MRI. Cerebral Cortex (New York, NY), 18 (12), pp. 2775.
  25. Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424 (6948), pp. 552-556.
  26. Hizanidis, J., Kouvaris, N. E., and Antonopoulos, C. G. (2015). Metastable and Chimera-like States in the C.Elegans Brain Network. Cybernetics and Physics, 4 (1), pp. 17-20.
  27. Hwang, H.-J., Kim, S., Choi, S., and Im, C.-H. (2013). EEG-Based Brain-Computer Interfaces: A Thorough Literature Survey. International Journal of Human- Computer Interaction, 29 (12), pp. 814-826.
  28. Jeneson, A. and Squire, L. R. (2012). Working memory, long-term memory, and medial temporal lobe func- tion.
  29. Learning & memory (Cold Spring Harbor, N.Y.), 19 (1), pp. 15-25.
  30. Kai Keng Ang, Cuntai Guan, Sui Geok Chua, K., Beng Ti Ang, Kuah, C., Chuanchu Wang, Kok Soon Phua, Zheng Yang Chin, and Haihong Zhang (2009). A clin- ical study of motor imagery-based brain-computer in- terface for upper limb robotic rehabilitation. In 2009 Annual International Conference of the IEEE Engi- neering in Medicine and Biology Society, IEEE, sep, pp. 5981-5984.
  31. Kauhanen, L., Rantanen, P., Lehtonen, J. A., Tarnanen, I., Alaranta, H., and Sams, M. (2004). "sensorimotor cortical activity of tetraplegics during attempted finger movements" intention and imagery. Biomed. Tech., 49, pp. 59-60.
  32. LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., and He, B. (2013). Quadcopter control in three- dimensional space using a noninvasive motor imagery- based brain-computer interface. Journal of neural en- gineering, 10 (4), pp. 046003.
  33. Lebon, F., Byblow, W. D., Collet, C., Guillot, A., and Stinear, C. M. (2012). The modulation of motor cor- tex excitability during motor imagery depends on im- agery quality. European Journal of Neuroscience, 35, pp. 323-331.
  34. Lisman, J. E. and Jensen, O. (2013). The θ-γ neural code. Neuron, 77 (6), pp. 1002-16.
  35. Llinás, R. and Ribary, U. (1993). Coherent 40-Hz oscil- lation characterizes dream state in humans. Proceed- ings of the National Academy of Sciences of the United States of America, 90 (5), pp. 2078-81.
  36. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4 (2), pp. R1-R13.
  37. Machado, S., Almada, L. F., and Annavarapu, R. N. (2013). Progress and Prospects in EEG-Based Brain- Computer Interface: Clinical Applications in Neurore- habilitation. Journal of Rehabilitation Robotics, 1 (1), pp. 28-41.
  38. Machado, S., Araújo, F., Paes, F., Velasques, B., Cunha, M., Budde, H., Basile, L. F., Anghinah, R., Arias- Carrión, O., Cagy, M., Piedade, R., de Graaf, T. A., Sack, A. T., and Ribeiro, P. (2010). EEG-based brain- computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation. Re- views in the neurosciences, 21 (6), pp. 451-68.
  39. Maris, E., van Vugt, M., and Kahana, M. (2011). Spa- tially distributed patterns of oscillatory coupling be- tween high-frequency amplitudes and low-frequency phases in human iEEG. NeuroImage, 54 (2), pp. 836- 50.
  40. McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2010). Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural En- gineering, 7 (3), pp. 036007.
  41. Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., and He, B. (2016). Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks. Scientific Reports, 6 (1), pp. 38565.
  42. Moghimi, S., Kushki, A., Marie Guerguerian, A., and Chau, T. (2013). A Review of EEG-Based Brain- Computer Interfaces as Access Pathways for Individ- uals with Severe Disabilities. Assistive Technology, 25 (2), pp. 99-110.
  43. Morash, V., Bai, O., Furlani, S., Lin, P., and Hallett, M. (2008). Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clinical Neurophysiology, 119 (11), pp. 2570-2578.
  44. Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehn- ertz, K., Elger, C. E., and Fernández, G. (2005). Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus, 15 (7), pp. 890-900.
  45. Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., and Rupp, R. (2005). EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters, 382 (1-2), pp. 169-174.
  46. Murguialday, A. R., Aggarwal, V., Chatterjee, A., Cho, Y., Rasmussen, R., O'Rourke, B., Acharya, S., and Thakor, N. V. (2007). Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback. In 2007 IEEE 10th International Conference on Rehabilitation Robotics, IEEE, jun, pp. 609-613.
  47. Ono, T., Shindo, K., Kawashima, K., Ota, N., Ito, M., Ota, T., Mukaino, M., Fujiwara, T., Kimura, A., Liu, M., and Ushiba, J. (2014). Brain-computer interface with somatosensory feedback improves functional re- covery from severe hemiplegia due to chronic stroke. Frontiers in Neuroengineering, 7, pp. 19.
  48. Pfurtscheller, G. and Lopes da Silva, F. (1999). Event- related EEG/MEG synchronization and desynchro- nization: basic principles. Clinical Neurophysiology, 110 (11), pp. 1842-1857.
  49. Pfurtscheller, G. and Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neu- roscience Letters, 239 (2-3), pp. 65-68.
  50. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F. L., Liberati, G., Curado, M. R., Garcia-Cossio, E., Vyziotis, A., Cho, W., Agostini, M., Soares, E., Soekadar, S., Caria, A., Cohen, L. G., and Birbaumer, N. (2013). Brain-Machine-Interface in Chronic Stroke Rehabilitation: A Controlled Study. Annals of neurology, 74 (1), pp. 100.
  51. Rayegani, S. M., Raeissadat, S. A., Sedighipour, L., Mo- hammad Rezazadeh, I., Bahrami, M. H., Eliaspour, D., and Khosrawi, S. (2014). Effect of Neurofeedback and Electromyographic-Biofeedback Therapy on Improv- ing Hand Function in Stroke Patients. Topics in Stroke Rehabilitation, 21 (2), pp. 137-151.
  52. Salmelin, R. and Hari, R. (1994). Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience, 60 (2), pp. 537-550.
  53. Sarac, M., Koyas, E., Erdogan, A., Cetin, M., and Patoglu, V. (2013). Brain Computer Interface based robotic rehabilitation with online modification of task speed. In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), IEEE, jun, pp. 1-7.
  54. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., Glennon, M., Gerloff, C., Bir- baumer, N., and Hummel, F. C. (2009). Brain Oscilla- tory Substrates of Visual Short-Term Memory Capac- ity. Current Biology, 19 (21), pp. 1846-1852.
  55. Schnitzler, A., Salenius, S., Salmelin, R., Jousmäki, V., and Hari, R. (1997). Involvement of Primary Motor Cortex in Motor Imagery: A Neuromagnetic Study. NeuroImage, 6 (3), pp. 201-208.
  56. Schwoebel, J., Boronat, C. B., and Branch Coslett, H. (2002). The man who executed "imagined" move- ments: evidence for dissociable components of the body schema. Brain and Cognition, 50, pp. 1-16.
  57. She, Q., Hu, B., Luo, Z., Nguyen, T., and Zhang, Y. (2019). A hierarchical semi-supervised extreme learn- ing machine method for EEG recognition. Medical & Biological Engineering & Computing, 57 (1), pp. 147- 157.
  58. Siegel, M., Donner, T. H., and Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interac- tions. Nature Reviews Neuroscience, 13 (2), pp. 121- 134.
  59. Sirigu, A., Cohen, L., Duhamel, J. R., Pillon, B., Dubois, B., Agid, Y., and Pierrot-Deseilligny, C. (1995). Con- gruent unilateral impairments for real and imagined hand movements. NeuroReport, 6, pp. 997-1001.
  60. Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., and Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science, 273, pp. 1564-1568.
  61. Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hip- pocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6 (2), pp. 149-172.
  62. Solodkin, A., Hlustik, P., Chen, E. E., and Small, S. L. (2004). Fine Modulation in Network Activation during Motor Execution and Motor Imagery. Cerebral Cortex, 14 (11), pp. 1246-1255.
  63. Sturm, I., Lapuschkin, S., Samek, W., and Müller, K.-R. (2016). Interpretable deep neural networks for single- trial EEG classification. Journal of Neuroscience Methods, 274, pp. 141-145.
  64. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: A user-friendly ap- plication for MEG/EEG analysis. Computational In- telligence and Neuroscience, 2011.
  65. Taulu, S. and Hari, R. (2009). Removal of magnetoen- cephalographic artifacts with temporal signal-space separation: Demonstration with single-trial auditory- evoked responses. Human Brain Mapping, 30 (5), pp. 1524-1534.
  66. Varela, F., Lachaux, J.-P., Rodriguez, E., and Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2 (4), pp. 229-239.
  67. Vaughan, T., Wolpaw, J., and Donchin, E. (1996). EEG- based communication: prospects and problems. IEEE Transactions on Rehabilitation Engineering, 4 (4), pp. 425-430.
  68. Voytek, B., Canolty, R. T., Shestyuk, A., Crone, N. E., Parvizi, J., and Knight, R. T. (2010). Shifts in Gamma Phase-Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks. Frontiers in Human Neuroscience, 4.
  69. Wolpaw, J. R. and McFarland, D. J. (1994). Multi- channel EEG-based brain-computer communication. Electroencephalography and Clinical Neurophysiol- ogy, 90 (6), pp. 444-449.
  70. Wolpaw, J. R. and McFarland, D. J. (2004). Control of a two-dimensional movement signal by a noninva- sive brain-computer interface in humans. Proceed- ings of the National Academy of Sciences, 101 (51), pp. 17849-17854.
  71. Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78 (3), pp. 252-259.
  72. Yohanandan, S. A., Kiral-Kornek, I., Tang, J., Mshford, B. S., Asif, U., and Harrer, S. (2018). A Robust Low- Cost EEG Motor Imagery-Based Brain-Computer In- terface. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology So- ciety (EMBC), IEEE, jul, pp. 5089-5092.