Academia.eduAcademia.edu

Outline

Music and Noise: Same or Different? What Our Body Tells Us

2019, Frontiers in Psychology

https://doi.org/10.3389/FPSYG.2019.01153

Abstract

In this article, we consider music and noise in terms of vibrational and transferable energy as well as from the evolutionary significance of the hearing system of Homo sapiens. Music and sound impinge upon our body and our mind and we can react to both either positively or negatively. Much depends, in this regard, on the frequency spectrum and the level of the sound stimuli, which may sometimes make it possible to set music apart from noise. There are, however, two levels of description: the physical-acoustic description of the sound and the subjective-psychological reactions by the listeners. Starting from a vibrational approach to sound and music, we first investigate how sound may activate the sense of touch and the vestibular system of the inner ear besides the sense of hearing. We then touch upon distinct issues such as the relation between low-frequency sounds and annoyance, the harmful effect of loud sound and noise, the direct effects of overstimulation with sound, the indirect effects of unwanted sounds as related to auditory neurology, and the widespread phenomenon of liking loud sound and music, both from the point of view of behavioral and psychological aspects.

References (123)

  1. Abbate, C. (2004). Music-drastic or gnostic? Crit. Inq. 30, 505-536. doi: 10.1086/421160
  2. Altmann, J. (2001). Acoustic weapons: a prospective assessment. Sci. Glob. Secur. 9, 165-234. doi: 10.1080/08929880108426495
  3. Alves-Pereira, M., and Castelo Branco, N. (2007). Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Prog. Biophys. Mol. Biol. 93, 256-279. doi: 10.1016/j. pbiomolbio.2006.07.011
  4. Arnett, J. (1994). Sensation seeking: a new conceptualization and a new scale. Personal. Individ. Differ. 16, 289-296. doi: 10.1016/0191-8869(94)90165-1
  5. Babisch, W. (2005). Noise and health. Environ. Health Perspect. 113, A14-A15. doi: 10.1289/ehp.113-a14
  6. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., et al. (2014). Auditory and non-auditory effects of noise on health. Lancet 383, 1325-1332. doi: 10.1016/S0140-6736(13)61613-X
  7. Beach, E., and Gilliver, M. (2019). Time to listen: most regular patrons of music venues prefer lower volumes. Front. Psychol. 22:607. doi: 10.3389/ fpsyg.2019.00607
  8. Beach, E., Williams, W., and Gilliver, M. (2013). Estimating young Australian adults' risk of hearing damage from selected leisure activities. Ear Hear. 34, 75-82. doi: 10.1097/AUD.0b013e318262ac6c
  9. Beckerman, J. (2014). The sonic boom. how sound transforms the way we think, feel and buy. (Boston, New York: Houghton Mifflin Harcourt).
  10. Bennett, A. (1999). Subcultures or neo-tribes? Rethinking the relationship between youth, style and musical taste. Sociology 33, 599-617. doi: 10.1177/ S0038038599000371
  11. Berglund, B., Harder, K., and Preis, A. (1994). Annoyance perception of sound and information extraction. J. Acoust. Soc. Am. 95, 1501-1509. doi: 10.1121/1.408537
  12. Berglund, B., Hassmén, P., and Soames Job, R. (1996). Sources and effects of low-frequency noise. J. Acoust. Soc. Am. 99, 2985-3002. doi: 10.1121/1.414863
  13. Blesser, B. (2007). The seductive (yet destructive) appeal of loud music. Available at: www.blesser.net
  14. Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., and Van Boxtel, A. (2005). Committee report: guidelines for human startle eyeblink electromyographic studies. Psychophysiology 42, 1-15. doi: 10.1111/j. 1469-8986.2005.00271.x
  15. Borg, J., Andrée, B., Soderstrom, H., and Farde, L. (2003). The serotonin system and spiritual experiences. Am. J. Psychiatry 160, 1965-1969. doi: 10.1176/ appi.ajp.160.11.1965
  16. Brattico, P., Brattico, E., and Vuust, P. (2017). Global sensory qualities and aesthetic experience in music. Front. Neurosci. 11:159. doi: 10.3389/ fnins.2017.00159
  17. Broner, N. (1978). The effects of low frequency noise on people-a review. J. Sound Vib. 58, 483-500. doi: 10.1016/0022-460X(78)90354-1
  18. Bryan, E. (1976). "Infrasound and low frequency vibration" in Low frequency annoyance. ed. W. Tempest (London: Academic Press), 65-96.
  19. Bulla, W. (2003). Daily noise-exposure of audio engineers: assessment of daily noise-exposures of professional music-recording audio engineers employing OSHA PEL criteria. MEIEA J. 3, 55-83.
  20. Castelo Branco, N., Pimenta, A., Ferreira, J., and Alves-Pereira, M. (2002). "Monitoring vibroacoustic disease" in Proceedings of the Scuola Superiore. L'Aquila. eds. G. R. Romoli and Telecom Italia (SSGRRw), vol. 102, 1-5.
  21. Clark, W. W. (1991). Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. J. Acoust. Soc. Am. 90, 155-163. doi: 10.1121/1.401309
  22. Colebatch, J. G. (2006). Assessing saccular, (otolith) function in man. J. Acoust. Soc. Am. 119:3432. doi: 10.1121/1.4786895
  23. Cusick, S. G. (2006). Music as torture/music as weapon. Trans. Rev. Transcult. Música, 10, 1-9.
  24. da Fonseca, J., dos Santos, J. M., Branco, N. C., Alves-Pereira, M., Grande, N., Oliveira, P., et al. (2006). Noise-induced gastric lesions: a light and scanning electron microscopy study of the alterations of the rat gastric mucosa induced by low frequency noise. Cent. Eur. J. Public Health 14, 35-38. doi: 10.21101/ cejph.a3362
  25. Davis, M., Gendelman, D. S., Tischler, M. D., and Gendelman, P. M. (1982). A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 2, 791-805. doi: 10.1523/JNEUROSCI.02-06-00791.1982
  26. Dibble, K. (1995). Hearing loss and music. J. Audio Eng. Soc. 43, 251-266.
  27. Egloff, D., Braasch, J., Robinson, P., Van Nort, D., and Krueger, T. (2011). A vibrotactile music system based on sensory substitution. J. Acoust. Soc. Am. 129, 2582-2582. doi: 10.1121/1.3588537
  28. Eidsheim, N. S. (2015). Sensing sound. singing & listening as vibrational practice. (Durham, London: Duke University Press).
  29. Ellis, R. J., and Thayer, J. F. (2010). Music and autonomic nervous system (Dys) function. Music Percept. An Interdiscip. J. 27, 317-326. doi: 10.1525/mp.2010.27.4.317
  30. Emami, S., Pourbakht, A., Daneshi, A., Sheykholeslami, K., Emamjome, H., and Kamali, M. (2013). Sound sensitivity of the saccule for low frequencies in healthy adults. ISRN Otolaryngol. 429680. doi: 10.1155/2013/429680
  31. Fettiplace, R., and Kim, K. X. (2014). The physiology of mechanoelectrical transduction channels in hearing. Physiol. Rev. 94, 951-986. doi: 10.1152/ physrev.00038.2013
  32. Fink, R. (2018). "Below 100 Hz" in The relentless pursuit of tone: Timbre in popular music. eds. R. Fink, M. Latour, and Z. Wallmark (Oxford: Oxford University Press), 88-116.
  33. Fletcher, H., and Munson, W. (1933). Loudness, its definition, measurement and calculation. J. Acoust. Soc. Am. 5, 82-108. doi: 10.1121/1.1915637
  34. Forsyth, A. J. M. (2009). Lager, lager shouting': the role of music and DJs in nightclub disorder control. Adicciones 21, 327-345. doi: 10.20882/adicciones.223
  35. Fukushima, A., Yagi, R., Kawai, N., Honda, M., Nishina, E., and Oohashi, T. (2014). Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects. PLoS One 9:e95464. doi: 10.1371/journal.pone.0095464
  36. Garrido, S., and Schubert, E. (2013). Adaptive and maladaptive attraction to negative emotions in music. Music. Sci. 17, 147-166. doi: 10.1177/ 1029864913478305
  37. Gavreau, V. (1968). Infrasound. Science J. 14, 33-37.
  38. Gavreau, V., Condat, R., and Saul, H. (1966). Infrasound: generators, detectors, physical qualities, biological effects. Acta Acust. Acust. 17, 1-10.
  39. Gelfand, S. A. (2009). "The acoustic reflex" in Handbook of clinical audiology 6th edn. eds. J. Katz, L. Medwetsky, R. Burkard, and L. Hood (New York, NY, USA: Lippincott Williams & Wilkins), 189-221. June 2019 | Volume 10 | Article 1153
  40. Gilles, A., Thuy, I., de Heyning, P., and De Rycke, E. (2014). A little bit less would be great: adolescents' opinion towards music levels. Noise Health 16, 285-291. doi: 10.4103/1463-1741.140508
  41. Gilles, A., Van Hal, G., De Ridder, D., Wouters, K., and Van de Heyning, P. (2013). Epidemiology of noise-induced tinnitus and the attitudes and beliefs towards noise and hearing protection in adolescents. PLoS One 8:e70297. doi: 10.1371/journal.pone.0070297
  42. Gleason, D. (2015). Sound for underground dance: the technical foundation. Sunsonic Sound System, 2015. Available at: www.unrec.com/sunsonic/sound2. htm (Accessed July 15, 2016).
  43. Goines, L., and Hagler, L. (2007). Noise pollution: a modern plague. South. Med. J. 100, 287-294. doi: 10.1097/SMJ.0b013e3180318be5
  44. Goodman, S. (2009). Sonic warfare: Sound, affect and the ecology of fear. (Cambridge, MA: MIT Press).
  45. Gould van Praag, C. D., Garfinkel, S. N., Sparasci, O., Mees, A., Philippides, A. O., Ware, M., et al. (2017). Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds. Sci. Rep. 7:45273. doi: 10.1038/srep45273
  46. Guéguen, N., Hélène, L. G., and Jacob, C. (2004). Sound level of background music and alcohol consumption: an empirical evaluation. Percept. Mot. Skills 99, 34-38. doi: 10.2466/pms.99.1.34-38
  47. Guinan, J. (2006). Acoustically responsive fibers in the mammalian vestibular nerve. J. Acoust. Soc. Am. 119, 3433-3434. doi: 10.1121/1.4786894
  48. Hainge, G. (2013). Noise matters: Towards an ontology of noise. (Bloomsbury: New York, London).
  49. Henriques, J. (2011). Sonic bodies: Reggae sound systems, performance techniques, and ways of knowing. (London and New York: Continuum).
  50. Huang, J., Gamble, D., Sarnlertsophon, K., Wang, X., and Hsiao, S. (2012). Feeling music: integration of auditory and tactile inputs in musical meter perception. PLoS One 7:e48496. doi: 10.1371/journal.pone.0048496
  51. Hyman, S. E., Malenka, R. C., and Nestler, E. J. (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565-598. doi: 10.1146/annurev.neuro.29.051605.113009
  52. Ito, S., Harada, T., Miyaguchi, M., Ishizaki, F., Chikamuran, C., Kodama, Y., et al. (2016). Effect of high-resolution audio music box sound on EEG. Int. Med. J. 23, 1-3.
  53. Ising, H., and Kruppa, B. (2004). Health effects caused by noise: evidence in the literature from the past 25 years. Noise Health 6, 5-13.
  54. Jankélévitch, V. (2003). Music and the ineffable. ed. C. Abbate (Princeton, NJ: Princeton University Press).
  55. Job, R. (1993). "Psychological factors of community reaction to noise" in Noise as a public health problem. ed. M. Vallet (Arcueil Cedex: INRETS) 3, 48-70.
  56. Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455-461. doi: 10.1016/S0959-4388(00)00234-8
  57. Johnson, O., Andrew, B., Walker, D., Morgan, S., and Aldren, A. (2014). British university students' attitudes towards noise-induced hearing loss caused by nightclub attendance. J. Laryngol. Otol. 128, 29-34. doi: 10.1017/ S0022215113003241
  58. Juslin, P. N., and Västfjäll, D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559-621. doi: 10.1017/S0140525X08005293
  59. Keizer, G. (2010). The unwanted sound of everything we want: A book about noise. (New York: Public Affairs).
  60. Koch, M., and Schnitzler, H.-U. (1997). The acoustic startle response in rats- circuits mediating evocation, inhibition and potentiation. Behav. Brain Res. 89, 35-49. doi: 10.1016/S0166-4328(97)02296-1
  61. Kraus, K. S., and Canlon, B. (2012). Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear. Res. 288, 34-46. doi: 10.1016/j.heares.2012.02.009
  62. Kujawa, S. G., and Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J. Neurosci. 26, 2115-2123. doi: 10.1523/JNEUROSCI.4985-05.2006
  63. Kujawa, S. G., and Liberman, M. C. (2009). Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J. Neurosci. 29, 14077-14085. doi: 10.1523/JNEUROSCI.2845-09.2009
  64. Kuribayashi, R., and Nittono, H. (2017). High-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness. Front. Psychol. 8:93. doi: 10.3389/fpsyg.2017.00093
  65. Kuwano, S., Namba, S., Hashimoto, T., Berglund, B., Da Rui, Z., Schick, A., et al. (1991). Emotional expression of noise: a cross-cultural study. J. Sound Vib. 151, 421-428. doi: 10.1016/0022-460X(91)90539-V
  66. Landälv, D., Malmström, L., and Widén, S. E. (2013). Adolescents' reported hearing symptoms and attitudes toward loud music. Noise Health 15, 347-354. doi: 10.4103/1463-1741.116584
  67. Landis, C., and Hunt, W. A. (1939). The startle pattern. (New York, NY: Farrar and Rinehart).
  68. Landström, U., Lundström, R., and Byström, M. (1983). Exposure to infrasound- perception and changes in wakefulness. J. Low Freq. Noise, Vib. Act. Control 2, 1-11. doi: 10.1177/026309238300200101
  69. Levänen, S., and Hamdorf, D. (2001). Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neurosci. Lett. 301, 75-77. doi: 10.1016/S0304-3940(01)01597-X
  70. Levänen, S., Jousmäki, V., and Hari, R. (1998). Vibration-induced auditory- cortex activation in a congenitally deaf adult. Curr. Biol. 8, 869-872. doi: 10.1016/S0960-9822(07)00348-X
  71. Leventhall, G. (2007). What is infrasound? Prog. Biophys. Mol. Biol. 93, 130-137. doi: 10.1016/j.pbiomolbio.2006.07.006
  72. Lewis, E. R., and Fay, R. R. (2004). "Environmental variables and the fundamental nature of hearing" in Evolution of the vertebrate auditory system. eds. G. A. Manley, A. N. Popper, and R. R. Fay (New York, NY: Springer), 27-54.
  73. Liberman, C., and Dodds, L. W. (1984). Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear. Res. 16, 55-74. doi: 10.1016/0378-5955(84)90025-X Lozon, J., and Bensimon, M. (2014). Music misuse: a review of the personal and collective roles of "problem music". Aggress. Violent Behav. 19, 207-218. doi: 10.1016/j.avb.2014.04.003
  74. Maschke, C. (2004). Introduction to the special issue on low frequency noise. Noise Health 6, 1-2.
  75. Maschke, C., Rupp, T., Hecht, K., and Maschke, C. (2000). The influence of stressors on biochemical reactions-a review of present scientific findings with noise. Int. J. Hyg. Environ. Health 203, 45-53. doi: 10.1078/ S1438-4639(04)70007-3
  76. Mayor, S. (2018). Noise pollution: WHO sets limits on exposure to minimise adverse health effects. BMJ 363:k4264. doi: 10.1136/bmj.k4264
  77. McLeroy, K. R., Bibeau, D., Steckler, A., and Glanz, K. (1988). An ecological perspective on health promotion programs. Health Educ. Q. 15, 351-377. doi: 10.1177/109019818801500401
  78. Mercier, V., and Hohmann, B. W. (2002). Is electronically amplified music too loud? What do young people think? Noise Health 4, 47-55.
  79. Miranda, D., and Claes, M. (2009). Music listening, coping, peer affiliation and depression in adolescence. Psychol. Music 37, 215-233. doi: 10.1177/0305735608097245
  80. Mithen, S. J. (2006). The singing Neanderthals: The origins of music, language, mind, and body. (Cambridge: Harvard University Press).
  81. Møller, H., and Pedersen, C. S. (2004). Hearing at low and infrasonic frequencies. Noise Health 6, 37-57.
  82. NIH (1990). "Noise and hearing loss" in NIH Consens. Statement 1990 Jan. 22-24, vol. 8, 1-24.
  83. Oertel, D., and Young, E. D. (2004). What's a cerebellar circuit doing in the auditory system? Trends Neurosci. 27, 104-110. doi: 10.1016/j.tins.2003.12.001
  84. Oliveira, P., Brito, J., Mendes, J., da Fonseca, J., Águas, A., and Martins dos Santos, J. (2013). Effects of large pressure amplitude low frequency noise in the parotid gland perivasculo-ductal connective tissue. Acta Medica Port. 26, 237-242. doi: 10.20344/amp.4251
  85. Oohashi, T., Nishina, E., Honda, M., Yonekura, Y., Fuwamoto, Y., Kawai, N., et al. (2000). Inaudible high-frequency sounds affect brain activity: hypersonic effect. J. Neurophysiol. 83, 3548-3558. doi: 10.1152/jn.2000.83.6.3548
  86. Parker, K. J., Hyde, S. A., Buckmaster, C. L., Tanaka, S. M., Brewster, K. K., Schatzberg, A. F., et al. (2011). Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys. Psychoneuroendocrinology 36, 547-556. doi: 10.1016/j.psyneuen.2010.08.009
  87. Perez, P., and Bao, J. (2011). Why do hair cells and spiral ganglion neurons in the cochlea die during aging? Aging Dis. 2, 231-241.
  88. Persson, K., and Björkman, M. (1988). Annoyance due to low frequency noise and the use of the dB(A) scale. J. Sound Vib. 127, 491-497. doi: 10.1016/0022-460X(88)90374-4 June 2019 | Volume 10 | Article 1153
  89. Phillips-Silver, J., and Trainor, L. J. (2007). Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105, 533-554. doi: 10.1016/j. cognition.2006.11.006
  90. Phillips-Silver, J., and Trainor, L. J. (2008). Vestibular influence on auditory metrical interpretation. Brain Cogn. 67, 94-102. doi: 10.1016/j. bandc.2007.11.007
  91. Popper, A. N., Platt, C., and Saidel, W. M. (1982). Acoustic functions in the fish ear. Trends Neurosci. 5, 276-280. doi: 10.1016/0166-2236(82)90171-0
  92. Reiss, J. (2016). A meta-analysis of high resolution audio perceptual evaluation. J. Audio Eng. Soc. 64, 364-379. doi: 10.17743/jaes.2016.0015
  93. Reybrouck, M. (2014). Musical sense-making between experience and conceptualisation: the legacy of Peirce, Dewey and James. Interdiscip. Stud. Musicol. 14, 176-205. doi: 10.14746/ism.2014.14.12
  94. Reybrouck, M. (2017). Perceptual immediacy in music listening. Multimodality and the "in time/outside of time" dichotomy. Versus 124, 89-104. doi: 10.14649/87044
  95. Reybrouck, M., and Eerola, T. (2017). Music and its inductive power: a psychobiological and evolutionary approach to musical emotions. Front. Psychol. 8:494. doi: 10.3389/fpsyg.2017.00494
  96. Richard, L., Gauvin, L., and Raine, K. (2011). Ecological models revisited: their uses and evolution in health promotion over two decades. Annu. Rev. Public Health 32, 307-326. doi: 10.1146/annurev-publhealth-031210-101141
  97. Romand, R. (Ed.) (1992). Development of auditory and vestibular systems. (New York: Elsevier).
  98. Ryan, A., Kujawa, S., Hammil, T., Le Prell, C., and Kil, J. (2016). Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol. Neurotol. 37, e271-43. doi: 10.1097/MAO.0000000000001071
  99. Rylander, R. (2004). Physiological aspects of noise-induced stress and annoyance. J. Sound Vib. 277, 471-478. doi: 10.1016/j.jsv.2004.03.008
  100. Saarinen, J. A. (2012). The oceanic state: a conceptual elucidation in terms of modal contact. Int. J. Psychoanal. 93, 939-961. doi: 10.1111/ j.1745-8315.2012.00620.x
  101. Sheykholeslami, K., and Kaga, K. (2002). The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies. Hear. Res. 165, 62-67. doi: 10.1016/ S0378-5955(02)00278-2
  102. Takahashi, Y., Kanada, K., and Yonekawa, Y. (2002a). Some characteristics of human body surface vibration induced by low frequency noise. J. Low Freq. Noise, Vib. Act. Control 21, 9-19. doi: 10.1260/02630920260374943
  103. Takahashi, Y., Kanada, K., and Yonekawa, Y. (2002b). The relationship between vibratory sensation and body surface vibration induced by low-frequency noise. J. Low Freq. Noise, Vib. Act. Control 21, 87-100. doi: 10.1260/ 026309202761019534
  104. Todd, N. P. M. (1993). Vestibular feedback in musical performance: response to "somatosensory feedback in musical performance". Music Percept. An Interdiscip. J. 10, 379-382. doi: 10.2307/40285575
  105. Todd, N. (2001). Evidence for a behavioral significance of saccular acoustic sensitivity in humans. J. Acoust. Soc. Am. 110, 380-390. doi: 10.1121/1.1373662
  106. Todd, N. P. M., and Cody, F. W. (2000). Vestibular responses to loud dance music: a physiological basis of the "rock and roll threshold"? J. Acoust. Soc. Am. 107, 496-500. doi: 10.1121/1.428317
  107. Todd, N. P. M., Cody, F. W., and Banks, J. R. (2000). A saccular origin of frequency tuning in myogenic vestibular evoked potentials?: implications for human responses to loud sounds. Hear. Res. 141, 180-188. doi: 10.1016/ S0378-5955(99)00222-1
  108. Todd, N. P. M., and Lee, C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Front. Hum. Neurosci. 9:444. doi: 10.3389/FNHUM.2015.00444
  109. Trainor, L. J., Gao, X., Lei, J., Lehtovaara, K., and Harris, L. R. (2009). The primal role of the vestibular system in determining musical rhythm. Cortex 45, 35-43. doi: 10.1016/J.CORTEX.2007.10.014
  110. Trainor, L. J., and Unrau, A. (2009). Extracting the beat: an experience-dependent complex integration of multisensory information involving multiple levels of the nervous system. Empir. Musicol. Rev. 4, 32-36. doi: 10.18061/1811/36606
  111. Verrillo, R. T. (1992). Vibration sensation in humans. Music Percept. An Interdiscip. J. 9, 281-302. doi: 10.2307/40285553
  112. Volcler, J. (2013). Extremely loud: Sound as a weapon. (New York, London: The New Press).
  113. von Gierke, H. E., and Nixon, C. (1976). "Effects of intense infrasound on man" in Infrasound and low frequency vibration. ed. W. Tempest (New York: Academic Press), 115-150.
  114. Wang, Y., Hirose, K., and Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J. Assoc. Res. Otolaryngol. 3, 248-268. doi: 10.1007/s101620020028
  115. Watanabe, T., and Møller, H. (1990). Low frequency hearing thresholds in pressure field and in free field. J. Low Freq. Noise, Vib. Act. Control 9, 106-115. doi: 10.1177/026309239000900303
  116. Welch, D., Dirks, K. N., Shepherd, D., and McBride, D. (2018). Health-related quality of life is impacted by proximity to an airport in noise-sensitive people. Noise Health 20, 171-177. doi: 10.4103/nah.NAH_62_17
  117. Welch, D., and Fremaux, G. (2017a). Understanding why people enjoy loud sound. Semin. Hear. 38, 348-358. doi: 10.1055/s-0037-1606328
  118. Welch, D., and Fremaux, G. (2017b). Why do people like loud sound? A qualitative study. Int. J. Environ. Res. Public Health 14:E908. doi: 10.3390/ ijerph14080908
  119. Welch, D., Shepherd, D., McBride, D., Dirks, K., and Marsh, S. (2013). Road traffic noise and health-related quality of life: a cross-sectional study. Noise Health 15, 224-230. doi: 10.4103/1463-1741.113513
  120. Whitmire, C. J., and Stanley, G. B. (2016). Rapid sensory adaptation Redux: a circuit perspective. Neuron 92, 298-315. doi: 10.1016/j.neuron.2016.09.046
  121. Williams, W., Beach, E. F., and Gilliver, M. (2010). Clubbing: the cumulative effect of noise exposure from attendance at dance clubs and night clubs on whole-of-life noise exposure. Noise Health 12, 155-158. doi: 10.4103/1463-1741.64970
  122. Yeowart, N. S. (1976). "Thresholds of hearing and loudness for very low frequencies" in Infrasound and low frequency vibration. ed. W. Tempest (London: Academic), 37-64.
  123. Yeowart, N. S., Bryan, M. E., and Tempest, W. (1967). The monaural MAP threshold of hearing at frequencies from 1.5 to 100 c/s. J. Sound Vibrat. 6, 335-342.