Academia.eduAcademia.edu

Outline

Similarities of modulation by temperature

2018

https://doi.org/10.4236/OJBIPHY.2018.83008

Abstract

Glycolytic oscillation is one of the first observed and described nonlinear phenomena in living objects. Our recent paper points out the similarity of the temperature and outer electric field to influence this oscillation. The electric field is absorbed and changes the molecules. Similarly to the effect of heating, molecules have various structural, dynamical and chemical changes promoted by electric field. The changes sometimes happen without increasing the temperature. Temperature, as the average energy of the included particles, has various kinds of “waste” energy used to heat up the particles which do not participate in the desired changes. The inaccuracy of the effects of temperature growth in local molecular changes could be remarkably high and could be corrected by the well-applied electric field absorption.

References (27)

  1. Winfru, A.T. (1972) Oscillatory Glycolisis in Yeast: The Pattern of Phase Resetting by Oxygen. Archives of Biochemistry and Biophysics, 149, 388-401. https://doi.org/10.1016/0003-9861(72)90337-2
  2. Goldbeter, A. (1996) Biochenmical Oscillations and Cellular Rythms. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511608193
  3. Novak, B. and Tyson, J.J. (2008) Design Principles of Biochemical Oscillators. Na- ture Reviews Molecular Cell Biology, 9, 981-991. https://doi.org/10.1038/nrm2530
  4. Place, C.M. and Arrowsmith, D.K. (1990) An Introduction to Dynamical Systems. Cambridge University Press, Cambridge.
  5. Selkov, E.E. (1968) Self-Oscillations in Glycolysis. European Journal of Biochemi- stry, 4, 79-86. https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
  6. Gilon, P., Ravier, M.A., Jonas, J.C. and Henguin, J.C. (2002) Control Mechanisms of the Oscillations of Insulin Secretion in Vitro and in Vivo. Diabetes, 51, S144-S151. https://doi.org/10.2337/diabetes.51.2007.S144
  7. Westermark, P.O. and Lansner, A. (2003) A Model of Phosphofructokinase and Glycolytic Oscillations in the Pancreatic β-Cell. Biophysical Journal, 85,126-139. https://doi.org/10.1016/S0006-3495(03)74460-9
  8. Riz, M., Braun, M. and Pedersen, M.G. (2014) Mathematical Modeling of Hetero- geneous Electrophysiological Responses in Human β-Cells. PLoS Computational Biology, 10, e1003389.
  9. Merrins, M.J., Van Dyke, A.R., Mapp, A.K., Rizzo, M.A. and Satin, L.S. (2013) Di- rect Measurements of Oscillatory Glycolysis in Pancreatic Islet β-Cells Using Novel Fluorescence Resonance Energy Transfer (FRET) Biosensors for Pyruvate Kinase M2 Activity. Journal of Biological Chemistry, 288, 33312-33322. https://doi.org/10.1074/jbc.M113.508127
  10. Olsen, L.F., Andersen, A.Z., Lunding, A., Brasen, J.C. and Poulsen, AK. (2009) Reg- ulation of Glycolytic Oscillations by Mitochondrial and Plasma Membrane H + -ATPases. Biophysical Journal, 96, 3850-3861. https://doi.org/10.1016/j.bpj.2009.02.026
  11. Gustavsson, A.K., Adiels, C.B., Mehlig, B. and Goksör, M. (2015) Entrainment of Heterogeneous Glycolytic Oscillations in Single Cells. Scientific Reports, 5, Article No. 9404. https://doi.org/10.1038/srep09404
  12. Gustavson, A.K. (2015) Glycolytic Oscillations in Individual Yeast Cells. Ph.D. The- sis, University of Gothenburg, Gothenburg.
  13. McCollum, P.D. and Henrickson, R.L. (1977) The Effect of Electrical Stimulation on the Rate of Post-Mortem Glycolysis in Some Bovine Muscles. Journal of Food Qual- ity, 1, 15-22.
  14. Song, Y., Wang, J. and Yau, S.T. (2014) Controlled Glucose Consumption in Yeast Using a Transistor-Like Device. Scientific Reports, 4, Article No. 5429. https://doi.org/10.1038/srep05429
  15. Bertram, R., Sherman, A. and Satin, L.S. (2007) Metabolic and Electrical Oscilla- tions: Partners in Controlling Pulsatile Insulin Secretion. American Journal of Phy- siology-Endocrinology and Metabolism, 293, E890-E900. https://doi.org/10.1152/ajpendo.00359.2007
  16. Hazel, J.R. and Prosser, C.L. (1974) Molecular Mechanisms of Temperature Com- pensation in Poikilotherms. Physiological Reviews, 54, 620-677. Open Journal of Biophysics
  17. Cruz, A.L.B., Hebly, M., Duong, G.H., Wahl, S.A., Pronk, J.T., Heijnen, J.J., Da- ran-Lapujade, P. and van Gulik, W.M. (2012) Similar Temperature Dependencies of Glycolytic Enzymes: An Evolutionary Adaptation to Temperature Dynamics? BMC Systems Biology, 6,151. https://doi.org/10.1186/1752-0509-6-151
  18. Mair, T., Warnke, C., Tsuji, K. and Muller, S.C. (2005) Control of Glycolytic Oscil- lations by Temperature. Biophysical Journal, 88, 639-646.
  19. Postnikov, E.B., Verveyko, D.V. and Verisokin, Y.A. (2011) Simple Model for Temperature Control of Glycolytic Oscillations. Physical Review E, Statistical, Non- linear, and Soft Matter Physics, 83, Article ID: 062901. https://doi.org/10.1103/PhysRevE.83.062901
  20. Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Strahlentherapie und Onkologie, 185,120-126. https://doi.org/10.1007/s00066-009-1903-1
  21. Pennes, H.H. (1948) Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1, 93-122. https://doi.org/10.1152/jappl.1948.1.2.93
  22. Najarian, S. and Pashaee, A. (2001) Improvement of the Pennes Equation in the Analysis of Heat Transfer Phenomenon in Blood Perfused Tissues. Biomedical Sciences Instrumentation, 37,185-190.
  23. Separeto, S.A. and Dewey, W.C. (1984) Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology, 10, 787-800. https://doi.org/10.1016/0360-3016(84)90379-1
  24. Tadayoshi, M. (1993) Cancer Treatment by Hyperthermia, Radiation and Drugs. Taylor & Francis Group, Washington DC.
  25. Yang, K.L., Huang, C.C., Chi, M.S., Chiang, H.C., Wang, Y.S., Andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Elec- tro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
  26. Andocs, G., Rehman, M.U., Zhao, Q.L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Dis- covery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
  27. Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, Taylor & Francis Group, Boca Raton, 323-336.