Thermal Face Authentication with Convolutional Neural Network
2018, Journal of Computer Science
https://doi.org/10.3844/JCSSP.2018.1627.1637Abstract
Matching thermal face images as a method of biometric authentication has gained increasing interest because of its advantage of tracking a target object at night and in total darkness. Therefore, for security purposes, it has become highly favourable and has extensive applications, for instance, in video surveillance at night. The aim of this study is to present a simple and efficient deep learning model, which accurately predicts person identification. A pre-trained Convolutional Neural Network (CNN) is employed to extract the features of the multiple convolution layers of the low resolutions' thermal infrared images. To run the program and evaluate the performance, we use a sample of 1500 resized thermal images, each with resolution 181×161 pixels. The sample comprises of images that were captured within different time-lapse and with diverse emotions, poses and lighting conditions. The proposed approach is effective compared to the state-of-the-art thermal face recognition algorithms and achieves impressive accuracy of 99.6% with less processing and training times.
References (36)
- Abadi, M., P. Barham, J. Chen, Z. Chen and A. Davis et al., 2016. TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, (SDI' 16), Google Brain.
- Chollet, F., 2015. Keras. https://github.com/fchollet/keras
- Chollet, F., (n.d.). Keras: Deep learning library for theano and tensorflow. https://keras.io/ CNN, (n.d.). Convolutional Neural Network. https://en.wikipedia.org/wiki/Convolutional_neural_ network
- Goodfellow, I., Y. Bengio and A. Courville, 2016. Deep Learning. 1st Edn., MIT Press, Cambridge, ISBN-10: 0262337371, pp: 800.
- Hadji, I. and R. Wildes, 2018. What do we understand about convolutional networks? arXiv preprint arXiv:1803.08834.
- He, K., X. Zhang, S. Ren and J. Sun, 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 27-30, IEEE Xplore Press, Las Vegas, NV, USA, pp: 770-778. DOI: 10.1109/CVPR.2016.90
- Hinton, G., N. Srivastava, A. Krizh, I. Sutskever and R. Salakhutdinov, 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
- Hoo-Chang, S., H. Roth, M. Gao, L. Lu and Z. Xu et al., 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging, 35: 1285-1298. DOI: 10.1109/TMI.2016.2528162
- Huang, G., Z. Liu, L. Van Der Maaten and K. Weinberger, 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jul. 21-26, IEEE Xplore Press, Honolulu, HI, USA, pp: 2261-2269. DOI: 10.1109/CVPR.2017.243
- Kandpal, A., 2017. Medium.com: https://codeburst.io/machine-learning-day-1- 60bd231d0660
- Karpathy, A., G. Toderici, S. Shetty, T. Leung and S. Rahul et al., 2014. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, IEEE Xplore Press, Columbus, OH, USA, pp: 1725-1732. DOI: 10.1109/CVPR.2014.223
- Khanal, S., J. Fulton and S. Shearer, 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric., 139: 22-32. DOI: 10.1016/j.compag.2017.05.001
- Kramer, O., 2016. Scikit-learn. Mach. Learn. Evolut. Strategies, 20: 45-53. DOI: 10.1007/978-3-319-33383-0_5
- Krizhevsky, A., I. Sutskever and G.E. Hinton, 2012. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst., 25: 1097-1105. DOI: 10.1145/3065386
- Krizhevsky, A., I. Sutskever and G.E. Hinton, 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60: 84-90. DOI: 10.1145/3065386
- Lahiri, B., S. Bagavathiappan, T. Jayakumar and J. Philip, 2012. Medical applications of infrared thermography: A review. Infrared Phys. Technol., 55: 221-235. DOI: 10.1016/j.infrared.2012.03.007
- LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, 1998. Gradient-based learning applied to document recognition. Proc. IEEE, 86: 2278-2324. DOI: 10.1109/5.726791
- LeCun, Y., K. Kavukcuoglu and C. Farabet, 2010. Convolutional networks and applications in vision. Proceedings of IEEE International Symposium on Circuits and Systems, May 30-Jun. 2, IEEE Xplore Press, Paris, France, pp: 253-256. DOI: 10.1109/ISCAS.2010.5537907
- MathWorks, 2015. Image processing toolbox. MathWorks. https://www.mathworks.com
- Ng, H.W., V. Dung Nguyen, V. Vonikakis and S. Winkler, 2015. Deep learning for emotion recognition on small datasets using transfer learning. Proceedings of the ACM on International Conference on Multimodal Interaction, Nov. 09-13, ACM, Seattle, Washington, USA, pp: 443-449. DOI: 10.1145/2818346.2830593
- Nixon, M.S. and A.S. Aguado, 2002. Feature Extraction and Image Processing. 1st Edn., Newnes, Oxford, ISBN-10: 0750650788, pp: 350.
- Oquab, M., L. Bottou, I. Laptev and J. Sivic, 2014. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, IEEE Xplore Press, Columbus, OH, USA., pp: 1717-1724. DOI: 10.1109/CVPR.2014.222
- Pedregosa, F., G. Varoquaux, A. Gramf, V. Michel and B. Thirion et al., 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12: 2825-2830.
- Peng, M., C. Wang, T. Chen and G. Liu, 2016. NIRFaceNet: A convolutional neural network for near-infrared face identification. Information, 61: 1-14. DOI: 10.3390/info7040061
- Sayed, M., 2018a. Biometric gait recognition based on machine learning. J. Comput. Sci., 14: 1064-1073. DOI: 10.3844/jcssp.2018.1064.1073
- Sayed, M., 2018b. Performance of convolutional neural networks for human identification by gait recognition. J. Artif. Intell., 11: 30-38. DOI: 10.3923/jai.2018.30.38
- Simonyan, K. and A. Zisserman, 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
- Smith, S. and Q. Le, 2018. A Bayesian perspective on generalization and stochastic gradient descent. ICLR.
- Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Machine Learn. Res., 15: 1929-1958.
- Szegedy, C., S. Ioffe, V. Vanhoucke and A. Alemi, 2017. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the 31th AAAI Conference on Artificial Intelligence, (CAI' 17), pp: 12-12.
- Szegedy, C., W. Liu, Y. Jia, P. Sermanet and S. Reed et al., 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 7-12, IEEE Xplore Press, Boston, MA, USA, pp: 1-9. DOI: 10.1109/CVPR.2015.7298594
- Tajbakhsh, N., J. Shin, S. Gurudu, R. Todd Hurst and C. Kendall et al., 2017. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imag., 35: 1299-1312. DOI: 10.1109/TMI.2016.2535302
- Vadivambal, R. and D. Jayas, 2011. Applications of thermal imaging in agriculture and food industry-a review. Food Bioprocess Technol., 4: 186-199. DOI: 10.1007/s11947-010-0333-5
- Wang, M. and W. Deng, 2018. Deep visual domain adaptation: A survey. Neurocomputing, 312: 135-153. DOI: 10.1016/j.neucom.2018.05.083
- Wu, Z., M. Peng and T. Chen, 2016. Thermal face recognition using convolutional neural network. Proceedings of the International Conference on Optoelectronics and Image Processing, Jun. 10-12, IEEE Xplore Press, Warsaw, Poland, pp: 6-9. DOI: 10.1109/OPTIP.2016.7528489
- Zaeri, N., F. Baker and R. Dip, 2015. Thermal face recognition using moments invariants. Int. J. Signal Process. Syst., 3: 94-99. DOI: 10.12720/ijsps.3.2.94-99