Academia.eduAcademia.edu

Outline

Thermal Face Authentication with Convolutional Neural Network

2018, Journal of Computer Science

https://doi.org/10.3844/JCSSP.2018.1627.1637

Abstract

Matching thermal face images as a method of biometric authentication has gained increasing interest because of its advantage of tracking a target object at night and in total darkness. Therefore, for security purposes, it has become highly favourable and has extensive applications, for instance, in video surveillance at night. The aim of this study is to present a simple and efficient deep learning model, which accurately predicts person identification. A pre-trained Convolutional Neural Network (CNN) is employed to extract the features of the multiple convolution layers of the low resolutions' thermal infrared images. To run the program and evaluate the performance, we use a sample of 1500 resized thermal images, each with resolution 181×161 pixels. The sample comprises of images that were captured within different time-lapse and with diverse emotions, poses and lighting conditions. The proposed approach is effective compared to the state-of-the-art thermal face recognition algorithms and achieves impressive accuracy of 99.6% with less processing and training times.

References (36)

  1. Abadi, M., P. Barham, J. Chen, Z. Chen and A. Davis et al., 2016. TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, (SDI' 16), Google Brain.
  2. Chollet, F., 2015. Keras. https://github.com/fchollet/keras
  3. Chollet, F., (n.d.). Keras: Deep learning library for theano and tensorflow. https://keras.io/ CNN, (n.d.). Convolutional Neural Network. https://en.wikipedia.org/wiki/Convolutional_neural_ network
  4. Goodfellow, I., Y. Bengio and A. Courville, 2016. Deep Learning. 1st Edn., MIT Press, Cambridge, ISBN-10: 0262337371, pp: 800.
  5. Hadji, I. and R. Wildes, 2018. What do we understand about convolutional networks? arXiv preprint arXiv:1803.08834.
  6. He, K., X. Zhang, S. Ren and J. Sun, 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 27-30, IEEE Xplore Press, Las Vegas, NV, USA, pp: 770-778. DOI: 10.1109/CVPR.2016.90
  7. Hinton, G., N. Srivastava, A. Krizh, I. Sutskever and R. Salakhutdinov, 2012. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
  8. Hoo-Chang, S., H. Roth, M. Gao, L. Lu and Z. Xu et al., 2016. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging, 35: 1285-1298. DOI: 10.1109/TMI.2016.2528162
  9. Huang, G., Z. Liu, L. Van Der Maaten and K. Weinberger, 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jul. 21-26, IEEE Xplore Press, Honolulu, HI, USA, pp: 2261-2269. DOI: 10.1109/CVPR.2017.243
  10. Kandpal, A., 2017. Medium.com: https://codeburst.io/machine-learning-day-1- 60bd231d0660
  11. Karpathy, A., G. Toderici, S. Shetty, T. Leung and S. Rahul et al., 2014. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, IEEE Xplore Press, Columbus, OH, USA, pp: 1725-1732. DOI: 10.1109/CVPR.2014.223
  12. Khanal, S., J. Fulton and S. Shearer, 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric., 139: 22-32. DOI: 10.1016/j.compag.2017.05.001
  13. Kramer, O., 2016. Scikit-learn. Mach. Learn. Evolut. Strategies, 20: 45-53. DOI: 10.1007/978-3-319-33383-0_5
  14. Krizhevsky, A., I. Sutskever and G.E. Hinton, 2012. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst., 25: 1097-1105. DOI: 10.1145/3065386
  15. Krizhevsky, A., I. Sutskever and G.E. Hinton, 2017. ImageNet classification with deep convolutional neural networks. Commun. ACM, 60: 84-90. DOI: 10.1145/3065386
  16. Lahiri, B., S. Bagavathiappan, T. Jayakumar and J. Philip, 2012. Medical applications of infrared thermography: A review. Infrared Phys. Technol., 55: 221-235. DOI: 10.1016/j.infrared.2012.03.007
  17. LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, 1998. Gradient-based learning applied to document recognition. Proc. IEEE, 86: 2278-2324. DOI: 10.1109/5.726791
  18. LeCun, Y., K. Kavukcuoglu and C. Farabet, 2010. Convolutional networks and applications in vision. Proceedings of IEEE International Symposium on Circuits and Systems, May 30-Jun. 2, IEEE Xplore Press, Paris, France, pp: 253-256. DOI: 10.1109/ISCAS.2010.5537907
  19. MathWorks, 2015. Image processing toolbox. MathWorks. https://www.mathworks.com
  20. Ng, H.W., V. Dung Nguyen, V. Vonikakis and S. Winkler, 2015. Deep learning for emotion recognition on small datasets using transfer learning. Proceedings of the ACM on International Conference on Multimodal Interaction, Nov. 09-13, ACM, Seattle, Washington, USA, pp: 443-449. DOI: 10.1145/2818346.2830593
  21. Nixon, M.S. and A.S. Aguado, 2002. Feature Extraction and Image Processing. 1st Edn., Newnes, Oxford, ISBN-10: 0750650788, pp: 350.
  22. Oquab, M., L. Bottou, I. Laptev and J. Sivic, 2014. Learning and transferring mid-level image representations using convolutional neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 23-28, IEEE Xplore Press, Columbus, OH, USA., pp: 1717-1724. DOI: 10.1109/CVPR.2014.222
  23. Pedregosa, F., G. Varoquaux, A. Gramf, V. Michel and B. Thirion et al., 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12: 2825-2830.
  24. Peng, M., C. Wang, T. Chen and G. Liu, 2016. NIRFaceNet: A convolutional neural network for near-infrared face identification. Information, 61: 1-14. DOI: 10.3390/info7040061
  25. Sayed, M., 2018a. Biometric gait recognition based on machine learning. J. Comput. Sci., 14: 1064-1073. DOI: 10.3844/jcssp.2018.1064.1073
  26. Sayed, M., 2018b. Performance of convolutional neural networks for human identification by gait recognition. J. Artif. Intell., 11: 30-38. DOI: 10.3923/jai.2018.30.38
  27. Simonyan, K. and A. Zisserman, 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.
  28. Smith, S. and Q. Le, 2018. A Bayesian perspective on generalization and stochastic gradient descent. ICLR.
  29. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 2014. Dropout: A simple way to prevent neural networks from overfitting. J. Machine Learn. Res., 15: 1929-1958.
  30. Szegedy, C., S. Ioffe, V. Vanhoucke and A. Alemi, 2017. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the 31th AAAI Conference on Artificial Intelligence, (CAI' 17), pp: 12-12.
  31. Szegedy, C., W. Liu, Y. Jia, P. Sermanet and S. Reed et al., 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 7-12, IEEE Xplore Press, Boston, MA, USA, pp: 1-9. DOI: 10.1109/CVPR.2015.7298594
  32. Tajbakhsh, N., J. Shin, S. Gurudu, R. Todd Hurst and C. Kendall et al., 2017. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imag., 35: 1299-1312. DOI: 10.1109/TMI.2016.2535302
  33. Vadivambal, R. and D. Jayas, 2011. Applications of thermal imaging in agriculture and food industry-a review. Food Bioprocess Technol., 4: 186-199. DOI: 10.1007/s11947-010-0333-5
  34. Wang, M. and W. Deng, 2018. Deep visual domain adaptation: A survey. Neurocomputing, 312: 135-153. DOI: 10.1016/j.neucom.2018.05.083
  35. Wu, Z., M. Peng and T. Chen, 2016. Thermal face recognition using convolutional neural network. Proceedings of the International Conference on Optoelectronics and Image Processing, Jun. 10-12, IEEE Xplore Press, Warsaw, Poland, pp: 6-9. DOI: 10.1109/OPTIP.2016.7528489
  36. Zaeri, N., F. Baker and R. Dip, 2015. Thermal face recognition using moments invariants. Int. J. Signal Process. Syst., 3: 94-99. DOI: 10.12720/ijsps.3.2.94-99