Face recognition in low resolution thermal images
2013, Computer Vision and Image Understanding
https://doi.org/10.1016/J.CVIU.2013.07.010Abstract
This paper proposes an accurate, rotation invariant, and fast approach for detection of facial features from thermal images. The proposed approach combines both appearance and geometric information to detect the facial features. A texture based detector is performed using Haar features and AdaBoost algorithm. Then the relation between these facial features is modeled using a complex Gaussian distribution, which is invariant to rotation. Experiments show that our proposed approach outperforms existing algorithms for facial features detection in thermal images. The proposed approach's performance is illustrated in a face recognition framework, which is based on extracting a local signature around facial features. Also, the paper presents a comparative study for different signature techniques with different facial image resolutions. The results of this comparative study suggest the minimum facial image resolution in thermal images, which can be used in face recognition. The study also gives a guideline for choosing a good signature, which leads to the best recognition rate.
References (23)
- Y.M. Lui, D. Bolme, B.A. Draper, J.R. Beveridge, G. Givens, P.J. Phillips, A meta- analysis of face recognition covariates, in: Proceedings of the 3rd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS'09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 139-146. .
- P. Buddharaju, I.T. Pavlidis, P. Tsiamyrtzis, M. Bazakos, Physiology-based face recognition in the thermal infrared spectrum, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 613-626.
- L. Trujillo, G. Olague, R. Hammoud, B. Hern, Automatic feature localization in thermal images for facial expression recognition, in: Joint IEEE International Workshop on Object Tracking and Classification Beyond the Visible Spectrum. CVPR'05 Workshops. .
- B. Martinez, X. Binefa, M. Pantic, Facial component detection in thermal imagery, in: Joint IEEE International Workshop on Object Tracking and Classification Beyond the Visible Spectrum. CVPR'10 Workshops, , vol. 3, San Francisco, USA, pp. 48-54. .
- D.A. Socolinsky, A. Selinger, A comparative analysis of face recognition performance with visible and thermal infrared imagery, in: Proceedings of the 16 th International Conference on Pattern Recognition (ICPR'02), IEEE Computer Society, Washington, DC, USA, 2002, pp. 217-220. .
- G. Hermosilla, J. Ruiz-del Solar, R. Verschae, M. Correa, A comparative study of thermal face recognition methods in unconstrained environments, Pattern Recogn. 45 (2012) 2445-2459.
- S.G. Kong, J. Heo, B.R. Abidi, J. Paik, M.A. Abidi, Recent advances in visual and infrared face recognition -a review, Comput. Vis. Image Underst. 97 (2005) 103-135.
- X. Chen, P.J. Flynn, K.W. Bowyer, IR and visible light face recognition, Comput. Vis. Image Underst. 99 (2005) 332-358.
- A. Selinger, D.A. Socolinsky, Appearance-Based Facial Recognition Using Visible and Thermal Imagery: A Comparative Study, Technical Report, 2001.
- H. M éndez, C.S. Martín, J. Kittler, Y. Plasencia, E. García-Reyes, Face recognition with LWIR imagery using local binary patterns, in: Proceedings of the Third International Conference on Advances in Biometrics, ICB '09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 327-336. .
- G. Hermosilla, J. Ruiz-del Solar, R. Verschae, M. Correa, Face recognition using thermal infrared images for human-robot interaction applications: a comparative study, in: Robotics Symposium (LARS), 2009 6th Latin American, pp. 1 -7. .
- J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, X. Chen, W. Gao, WLD: a robust local image descriptor, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010) 1705- 1720.
- P. Buddharaju, I.T. Pavlidis, P. Tsiamyrtzis, M. Bazakos, Physiology-based face recognition in the thermal infrared spectrum, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 613-626.
- G. Hermosilla, P. Loncomilla, J. Ruiz-del Solar, Thermal face recognition using local interest points and descriptors for HRI applications, in: J.Ruiz-del Solar, E.Chown, P.G. Plöger (Eds.), RoboCup, 2010. .
- G. Bebis, A. Gyaourova, S. Singh, I. Pavlidis, Face recognition by fusing thermal infrared and visible imagery, Image Vis. Comput. 24 (2006) 727-742.
- S. Desa, S. Hati, IR and visible face recognition using fusion of kernel based features, in: Proceedings of the 19 th International Conference on Pattern Recognition (ICPR'08), pp. 1 -4. .
- F.M. Pop, M. Gordan,C. Florea, A. Vlaicu, Fusion based approach for thermal and visible face recognition under pose and expresivity variation, in: Roedunet International Conference (RoEduNet), 2010 9th, pp. 61 -66. .
- B. Abidi, S. Huq, M. Abidi, Fusion of visual, thermal, and range as a solution to illumination and pose restrictions in face recognition, in: 38th Annual 2004 International Carnahan Conference on Security Technology, 2004, pp. 325 - 330.
- I. Dryden, K.V. Mardia, The Statistical Analysis of Shape, Wiley, London, 1998.
- M. Guillaumin, J. Verbeek, C. Schmid, Is that you? metric learning approaches for face identification, in: International Conference on Computer Vision, pp. 498-505. .
- X. Tan, S. Chen, Z.-H. Zhou, F. Zhang, Face recognition from a single image per person: a survey, Pattern Recogn. 39 (2006) 1725-1745.
- T. Ahonen, S. Member, A. Hadid, M. Pietikinen, S. Member, Face description with local binary patterns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 2037-2041.
- H. Bay, A. Ess, T. Tuytelaars, L. VanGool, Speeded-up robust features (SURF), Comput. Vis. Image Underst. 110 (2008) 346-359.