Academia.eduAcademia.edu

Outline

Open source low-cost power monitoring system

2018, HardwareX

https://doi.org/10.1016/J.OHX.2018.E00044

Abstract

This study presents an entirely open-source, low-cost power monitoring system capable of many types of measurements including both loads and supplies such as solar photovoltaic systems. In addition, the system can be fabricated using only open source software and hardware. The design revolves around the Digital Universal Energy Logger (DUEL) Node, which is responsible for reading and properly scaling the voltage and current of a particular load, and then serializing it via an on-board ATTiny85 chip. The configuration of the DUEL node allows for custom sensitivity ranges, and can handle up to 50 A and 300 V. Up to 127 DUEL nodes communicate via Inter-Integrated Circuit (I2C) on a bus, which can be monitored and logged through an Arduino UNO, or other compatible microcontroller. Using accessible equipment, the DUEL node can be calibrated to a desirable accuracy and error. The DUEL nodes are also completely customizable, making them fit for any input range, where all commercially-available products are fixed range. The open source solution out performs commercial solutions as the price per measurement ($18.25) is significantly smaller, while the number of serviceable channels (127) is significantly higher.

References (69)

  1. S. Weber, The success of open source, Harvard University Press, Cambridge, MA, 2004.
  2. J. Pearce, Open-source lab: how to build your own hardware and reduce research costs, Elsevier, Amsterdam, 2014.
  3. M. Coakley, D.E. Hurt, 3D Printing in the Laboratory Maximize Time and Funds with Customized and Open-Source Labware. J. Laboratory Automation (2016) 2211068216649578.
  4. Joshua M. Pearce, Building Research Equipment with Free, Open-Source Hardware, Science 337 (6100) (2012) 1303-1304, https://doi.org/ 10.1126/science.1228183.
  5. C. Harnett, Open source hardware for instrumentation and measurement, IEEE Instrum. Meas. Mag. 14 (3) (2011) 34-38, https://doi.org/10.1109/ mim.2011.5773535.
  6. K.C. Dhankani, J.M. Pearce, Open source laboratory sample rotator mixer and shaker, HardwareX 1 (2017) 1-12, https://doi.org/10.1016/j. ohx.2016.07.001.
  7. M.S. Mcmunn, A time-sorting pitfall trap and temperature datalogger for the sampling of surface-active arthropods, HardwareX 1 (2017) 38-45, https://doi.org/10.1016/j.ohx.2017.02.001.
  8. L. Pocero, D. Amaxilatis, G. Mylonas, I. Chatzigiannakis, Open source IoT meter devices for smart and energy-efficient school buildings, HardwareX 1 (2017) 54-67, https://doi.org/10.1016/j.ohx.2017.02.002.
  9. T. Birtchnell, W. Hoyle, 3D printing for development in the global south: The 3D4D challenge, Palgrave Macmillan, 2014.
  10. B. Hazeltine, C. Bull, Appropriate Technology; Tools, Choices, and Implications, Academic Press Inc., 1998.
  11. J.M. Pearce, The case for open source appropriate technology, Environ. Dev. Sustain. 14 (3) (2012) 425-431.
  12. C.C. Thomson, M. Jakubowski, Toward an Open Source Civilization: (Innovations Case Narrative: Open Source Ecology), Innov. Technol. Governance Globalization 7 (3) (2012) 53-70, https://doi.org/10.1162/inov_a_00139.
  13. M. Jakubowski, Global Village Construction Set (2011). Recuperado a partir de https://www. kickstarter. com/projects/622508883/global-village- construction-set.
  14. C. Mota, The rise of personal fabrication, in: Proceedings of the 8th ACM conference on Creativity and cognition -C&C '11 (2011). doi:10.1145/ 2069618.2069665.
  15. J. Gwamuri, B.T. Wittbrodt, N.C. Anzalone, J.M. Pearce, Reversing the trend of large scale and centralization in manufacturing: The case of distributed manufacturing of customizable 3-D-printable self-adjustable glasses, Challenges Sustain. 2 (1) (2014) 30-40.
  16. J.M. Pearce, Photovoltaics -a path to sustainable futures, Futures 34 (7) (2002) 663-674, https://doi.org/10.1016/s0016-3287(02)00008-3.
  17. G.A. Keoleian, G.M. Lewis, Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US, Renew. Energy 28 (2) (2003) 271-293, https://doi.org/10.1016/s0960-1481(02)00022-8.
  18. J. Pearce, A. Lau, Net Energy Analysis for Sustainable Energy Production From Silicon Based Solar Cells, Sol. Energy (2002), https://doi.org/10.1115/ sed2002-1051.
  19. D. Prasad, M. Snow, Designing with solar power: a source book for building integrated photovoltaics (BiPV), Routledge, 2014.
  20. N. Mohan, Power electronics: a first course, Wiley, Hoboken, N.J, 2012.
  21. Neurio, There is money being wasted in your home. Let Neurio find it (2017). Retrieved May 05, 2017, from http://neur.io/.
  22. Eyedro, Home Electricity Monitors (2017). Retrieved May 05, 2017, from http://eyedro.com/home-electricity-monitors/.
  23. Smappee, A gift for your home (2017). Retrieved May 05, 2017, from http://www.smappee.com/us/energy-monitor-home.
  24. Energy CURB, Power Your Life. Smarter (2017). Retrieved May 05, 2017, from http://energycurb.com/.
  25. R. Blanchard, M. Little, Developing an open access monitoring device for off-grid renewables, in: 2016 4th International Conference on the Development in the in Renewable Energy Technology (ICDRET) (2016). doi:10.1109/icdret.2016.7421511.
  26. M. Torres, F.J. Muñoz, J.V. Muñoz, C. Rus, Online Monitoring System for Stand-Alone Photovoltaic Applications-Analysis of System Performance From Monitored Data, J. Sol. Energy Eng. 134 (3) (2012), https://doi.org/10.1115/1.4005448 034502.
  27. J. Han, J. Jeong, I. Lee, S. Kim, Low-cost monitoring of photovoltaic systems at panel level in residential homes based on power line communication, IEEE Trans. Consum. Electron. 63 (2017) 435-441, https://doi.org/10.1109/TCE.2017.015074.
  28. M. Mnati, A. Van den Bossche, R. Chisab, M.J. Mnati, A. Van den Bossche, R.F. Chisab, A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application, Sensors 17 (2017) 872, https://doi.org/10.3390/s17040872.
  29. R. Anand, R.K. Pachauri, A. Gupta, Y.K. Chauhan, Design and analysis of a low cost PV analyzer using Arduino UNO, in: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-4. doi:10.1109/ICPEICES.2016.7853491.
  30. W. de A. Marques, V.H. Ferreira, G.G. Sotelo, Design of a real-time, low-cost monitoring system for hybrid solar-wind power generation system, in: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 2018, pp. 1-6. doi:10.1109/SBSE.2018.8395836.
  31. J. Jackson, S.P.D. Chowdhury, Energy monitoring of a SMME photovoltaic power system, in: 2017 52nd International Universities Power Engineering Conference (UPEC), 2017, pp. 1-6. doi:10.1109/UPEC.2017.8231989.
  32. M. Alonso-Rosa, A. Gil-de-Castro, R. Medina-Gracia, A. Moreno-Munoz, E. Cañete-Carmona, Novel Internet of Things Platform for In-Building Power Quality Submetering, Appl. Sci. 8 (2018) 1320, https://doi.org/10.3390/app8081320.
  33. A.R. Jadhav, P. Rajalakshmi, IoT enabled smart and secure power monitor, in: 2017 IEEE Region 10 Symposium (TENSYMP), 2017, pp. 1-4. doi:10.1109/ TENCONSpring.2017.8070096.
  34. H. Yang, S.R. Hui, Nonintrusive Power Measurement Method With Phase Detection for Low-Cost Smart Meters, IEEE Trans. Ind. Electron. 64 (2017) 3962-3969, https://doi.org/10.1109/TIE.2017.2652344.
  35. N. Forero, J. Hernández, G. Gordillo, Development of a monitoring system for a PV solar plant, Energy Convers. Manage. 47 (15-16) (2006) 2329-2336, https://doi.org/10.1016/j.enconman.2005.11.012.
  36. H., A.A. Khuwaja, A. Sattar, Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser. 2015 Power Generation System and Renewable Energy Technologies (PGSRET) (2015). doi:10.1109/pgsret.2015.7312240.
  37. N. Chinomi, M. Leelajindakrairerk, S. Boontaklang, C. Chompoo-Inwai, Design and Implementation of a smart monitoring system of a modern renewable energy micro-grid system using a low-cost data acquisition system and LabVIEWTM program, J. Int. Council Electr. Eng. 7 (2017) 142-152, https://doi.org/10.1080/22348972.2017.1345226.
  38. S. Makonin, F. Popowich, T. Moon, B. Gill, Inspiring energy conservation through open source power monitoring and in-home display, in: 2013 IEEE Power & Energy Society General Meeting (2013). doi:10.1109/pesmg.2013.6672619.
  39. J. Han, I. Lee, S. Kim, User-friendly monitoring system for residential PV system based on low-cost power line communication, in: 2015 IEEE International Conference on Consumer Electronics (ICCE) (2015). doi:10.1109/icce.2015.7066554.
  40. R. Riggio, C. Sengul, K.M. Gomez, T. Rasheed, Energino. ACM SIGCOMM, Comput. Commun. Rev. 42 (4) (2012) 273, https://doi.org/10.1145/ 2377677.2377727.
  41. H. Lu, L. Zhan, Y. Liu, W. Gao, A Microgrid Monitoring System Over Mobile Platforms, IEEE Trans. Smart Grid 8 (2017) 749-758, https://doi.org/10.1109/ TSG.2015.2510974.
  42. R. Takano, H. Nakada, T. Shimizu, T. Kudoh, A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud Computing, in: Y.-S. Jeong, Y.-H. Park, C.-H. (Robert) Hsu, J.J. (Jong H. Park (Eds.), Ubiquitous Information Technologies and Applications, Springer Berlin Heidelberg, 2014, pp. 809-817.
  43. J. Wang, Z. Bao, Y. Yang, Design of Power Monitoring System on Smart Hotel, in: 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 2017, pp. 312-315. doi:10.1109/ISCID.2017.232.
  44. D. Balsamo, G. Gallo, D. Brunelli, L. Benini, Non-intrusive Zigbee power meter for load monitoring in smart buildings, 2015 IEEE Sensors Applications Symposium (SAS) (2015) 1-6, https://doi.org/10.1109/SAS.2015.7133611.
  45. V. Dani, D. Jalihal, S. Sampoornam, R.K. Chowdhury, S. Vasan, S. Ramanan, R.K. R, Power line carrier communication based low cost power monitoring and management system, in: 2016 First International Conference on Sustainable Green Buildings and Communities (SGBC), 2016, pp. 1-4. doi:10.1109/ SGBC.2016.7936054.
  46. Y. Fan, H. Chen, The design and implementation of a low-cost power monitoring system for campus power monitoring, 2018 IEEE International Conference on Applied System Invention (ICASI) (2018) 720-721, https://doi.org/10.1109/ICASI.2018.8394360.
  47. C. Meetoo, S. Bahadoorsingh, N. Ramsamooj, C. Sharma, Wireless residential power monitoring system, 2017 IEEE Manchester PowerTech (2017) 1-6, https://doi.org/10.1109/PTC.2017.7981122.
  48. OpenEnergyMonitor (2017). Retrieved May 05, 2017, from https://openenergymonitor.org/.
  49. NXP, UM10204 I2C-bus specification and user manual (2014). https://www.nxp.com/docs/en/user-guide/UM10204.pdf.
  50. AKM, CQ-2334 High-Speed Small Current Sensor. https://www.akm.com/akm/en/file/datasheet/CQ-2334.pdf.
  51. Non-Invasive Current Sensor -30A, Retrieved May 05 2017, from https://www.sparkfun.com/products/11005.
  52. KiCAD EDA (2017). Retrieved May 05, 2017, from http://kicad-pcb.org/
  53. S. Oberloier, J.M. Pearce, General Design Procedure for Free and Open-Source Hardware for Scientific Equipment, Designs 2 (1) (2017) 2, https://doi. org/10.3390/designs2010002.
  54. Project Ideas. (2017). Retrieved May 05, 2017, from http://playground.arduino.cc/Projects/Ideas.
  55. Z. (2017, March 18). Arduino Projects. Retrieved May 05, 2017, from http://www.instructables.com/id/Arduino-Projects/.
  56. Inverter. (2017). Retrieved May 05, 2017, from http://opensourceecology.org/wiki/Inverter.
  57. A. Leon-Garcia, A. Leon-Garcia, Probability, statistics, and random processes for electrical engineering, Prentice Hall, Harlow, 2008.
  58. C.R. Paul, Electromagnetics for engineers: with applications to digital systems and electromagnetic interference, John Wiley & Sons, Hoboken, NJ, 2004.
  59. Adafruit Industries, (2017). Adafruit 1.44'' Color TFT LCD Display with MicroSD Card breakout. Retrieved May 05, 2017, from https://www. adafruit.com/product/2088.
  60. Arduino (2017). Retrieved May 05, 2017, from https://www.arduino.cc/en/main/software.
  61. L.L. Peterson, B.S. Davie, Computer networks: a systems approach, Morgan Kaufmann is an imprint of Elsevier, Amsterdam, 2012.
  62. Atmel, Atmel 8-bit AVR Microcontroller with 2/4/8K Bytes In-System Programmable Flash (2013). docs-europe.electrocomponents.com/webdocs/ 15fe/0900766b815fed70.pdf.
  63. D.A. Neamen, Microelectronics circuit analysis and design, McGraw-Hill Education, New York, 2010.
  64. Programming ATTiny85 with Arduino Uno. (2017). Retrieved May 05, 2017, from https://create.arduino.cc/projecthub/arjun/programming-attiny85- with-arduino-uno-afb829.
  65. S. Oberloier, J.M. Pearce, Belt-driven open source circuit mill using low-cost 3-D printer components, Inventions 3 (3) (2018) 64, https://doi.org/ 10.3390/inventions3030064.
  66. G.C. Anzalone, B. Wijnen, J.M. Pearce, Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer, Rapid Prototyping J. 21 (5) (2015) 506-519, https://doi.org/10.1108/rpj-09-2014-0113.
  67. PCB Prototyping (2017). Retrieved May 05, 2017, from http://flatcam.org/.
  68. ''OCI Copper Carve." OCI Copper Carve Open Circuit Institute. Retrieved April 04, 2018. http://opencircuitinstitute.org/content/oci-copper-carve.
  69. S. Jahn, Quite Universal Circuit Simulator (QUCS) (2017). Retrieved May 05, 2017, from http://qucs.sourceforge.net/.