BOUNDED TOEPLITZ PRODUCTS ON WEIGHTED BERGMAN SPACES
https://doi.org/10.1016/J.JMAA.2008.05.078Abstract
We consider the question for which square integrable analytic functions f and g on the unit disk the densely defined products T f T g are bounded on the Bergman space. We prove results analogous to those we obtained in the setting of the unweighted Bergman space [17]. We will furthermore completely describe when the Toeplitz product T f T g is invertible or Fredholm and prove results generalizing those we obtained for the un-weighted Bergman space in [18].
References (22)
- S. AXLER, D. ZHENG, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47(1998), 387-400.
- R.R. COIFMAN, C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51(1974), 241-250.
- D. CRUZ-URIBE, The invertibility of the product of unbounded Toeplitz operators, Integral Equations Operator Theory 20(1994), 231-237.
- J. DUOANDIKOETXEA, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI 2000.
- J. GARCIA-CUERVA, J.L. RUBIO DE FRANICA, Weighted Norm Inequalities and Related Topics, North Holland Math. Stud., vol. 116, North Holland, Amsterdam 1985.
- J.B. GARNETT, Bounded Analytic Functions, Pure Appl. Math., vol. 96, Academic Press, New York-London 1981.
- R. HUNT, B. MUCKENHOUPT, R. WHEEDEN, Weighted norm inequalities for the con- jugate function and Hilbert transform, Trans. Amer. Math. Soc. 176(1973), 227-252.
- J.L. JOURNÉ, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math., vol. 994, Springer Verlag, New York 1983.
- D. SARASON, Function theory on the unit circle, preprint, Virginia Polytechnic Inst. and State Univ., Blacksburg 1978.
- D. SARASON, Exposed Points in H 1 . I, Oper. Theory Adv. Appl., vol. 41, Birkhauser Verlag, Basel 1989, pp. 485-496.
- D. SARASON, Exposed Points in H 1 . II, Oper. Theory Adv. Appl., vol. 48, Birkhauser Verlag, Basel 1990, pp. 333-347.
- D. SARASON, Products of Toeplitz operators, in Linear and Complex Analysis Problem. Book 3, Part I, Lecture Notes in Math., vol. 1573, Springer-Verlag, Berlin 1994, pp. 318-319.
- E.M. STEIN, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton 1993.
- K. STROETHOFF, The Berezin transform and operators on spaces of analytic functions, in Linear Operators, Banach Center Publ., vol. 38, Polish Acad. Sci., Warsaw 1997, pp. 361-380.
- K. STROETHOFF, Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform, in Function Spaces (Edwardsville, IL, 1998), Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI 1999, pp. 313-319.
- K. STROETHOFF, D. ZHENG, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329(1992), 773-794.
- K. STROETHOFF, D. ZHENG, Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169(1999), 289-313.
- K. STROETHOFF, D. ZHENG, Invertible Toeplitz products, J. Funct. Anal. 195(2002), 48-70.
- K. STROETHOFF, D. ZHENG, Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278(2003), 125-135.
- D. ZHENG, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138(1996), 477-501.
- K.H. ZHU, Operator Theory in Function Spaces, Marcel Dekker, New York-Basel 1990.
- K.H. ZHU, Translating inequalities between Hardy and Bergman spaces, Amer. Math. Monthly 111(2004), 520-525.